If int_0^3 f(x) dx = 8 30f(x)dx=8 then calculate? (A) (i) int_0^3 2f(x) dx302f(x)dx, (ii) int_0^3 f(x) + 2 dx30f(x)+2dx (B) cc and dd so that int_c^d f(x-2) dx dcf(x2)dx

2 Answers
Aug 22, 2017

A) (i) int_0^3 \ 2f(x) \ dx = 16
A) (ii) int_0^3 \ f(x) + 2 \ dx = 14

B) c=2 ; d = 5

Explanation:

We are given that:

int_0^3 \ f(x) \ dx = 8

Part (A)

(i) int_0^3 \ 2f(x) \ dx = 2 \ int_0^3 \ f(x) \ dx
" " = 2* 8
" " = 16

(ii) int_0^3 \ f(x) + 2 \ dx = int_0^3 \ f(x) \ dx + int_0^3 \ 2 \ dx
" " = int_0^3 \ f(x) \ dx + 2 \ int_0^3 \ dx
" " = 8 + 2[x]_0^3
" " = 8 + 2(3-0)
" " = 8 + 6
" " = 14

Part (B)

We are given that:

int_c^d \ f(x-2) \ dx = 8

The graph of y=f(x-2) represents a translation of y=f(x) by a shift to the right by two units.

Thus, as we know that int_0^3 \ f(x) \ dx = 8 then

c-2 = 0 => c=2
d-2 = 3 => d = 5

Aug 22, 2017

(a)(i): 16; (ii): 14; (b): c=2, d=5.

Explanation:

Given that, for a fun. f, int_0^3 f(x)dx=8.

(a)(i): int_0^3{2f(x)}dx=2int_0^3f(x)dx=2*8=16.

(a)(ii): int_0^3{f(x)+2}dx=int_0^3f(x)dx+int_0^3 2dx,

=8+2int_0^3 1dx,

=8+2[x]_0^3,

=8+2[3-0],

=8+6,

=14.

(b): int_c^df(x-2)dx=8.

Let, (x-2)=t," so that, "dx=dt.

Also, when, x=c, t=x-2=c-2.

Similarly, when, x=d, t=d-2.

:. int_c^d f(x-2)dx=int_(c-2)^(d-2)f(t)dt.

But, int_c^df(x-2)dx=8=int_0^3 f(x)dx=8=int_0^3f(t)dt.

:. int_(c-2)^(d-2)f(t)dt=8=int_0^3f(t)dt.

Evidently, c-2=0 rArr c=2, and, d-2=3 rArr d=5.

;. (c,d)=(2,5).

Enjoy Maths.!