If int_0^1 f(t) dt = 19 then find?: (A) int_0^0.125 f(8t) dt, (B) int_0^0.25 f(1−4t) dt, and (C) int_0.4^0.5 f(5-10t) dt

1 Answer
Oct 18, 2017

int_0^0.125 \ f(8t) \ dt = 19/8

int_0^0.25 \ f(1−4t) \ dt = 19/4

int_0.4^0.5 \ f(5-10t) \ dt = 9/10

Explanation:

We have:

int_0^1 \ f(t) \ dt = 19

We first note that the above result is independent of the variable t, thus:

int_0^1 \ f(t) \ dt = int_0^1 \ f(u) \ du = 19

Part A

Find I_1 = int_0^0.125 \ f(8t) \ dt

We can perform a substitution, Let:

u = 8t => (du)/(dt) = 8 => 1/8(du)/(dt) = 1

And we change the limits of integration:

t={ (0), (0.125) :} => u={ (0), (1) :}

If we substitute into the integral then we get:

I_1 = int_0^1 \ f(u) \ (1/8) \ du
\ \ \ = 1/8 \ int_0^1 \ f(u) \ du
\ \ \ = 1/8 * 19
\ \ \ = 19/8

Part B

Find I_2 = int_0^0.25 \ f(1−4t) \ dt

We can perform a substitution, Let:

u = 1-4t => (du)/(dt) = -4 => -1/4(du)/(dt) = 1

And we change the limits of integration:

t={ (0), (0.25) :} => u={ (1), (0) :}

If we substitute into the integral then we get:

I_2 = int_1^0 \ f(u) \ (-1/4) \ du
\ \ \ = -1/4 \ int_1^0 \ f(u) \du
\ \ \ = 1/4 \ int_0^1 \ f(u) \du
\ \ \ = 1/4 * 19
\ \ \ = 19/4

Part C

Find I_3 = int_0.4^0.5 \ f(5-10t) \ dt

We can perform a substitution, Let:

u = 5-10t => (du)/(dt) = -10 => -1/10(du)/(dt) = 1

And we change the limits of integration:

t={ (0.4), (0.5) :} => u={ (1), (0) :}

If we substitute into the integral then we get:

I_3 = int_1^0 \ f(u) \ (-1/10) \ du
\ \ \ = -1/10 \ int_1^0 \ f(u) du
\ \ \ = 1/10 \ int_0^1 \ f(u) du
\ \ \ = 1/10 * 19
\ \ \ = 19/10