If # int_0^1 f(t) dt = 19# then find?: (A) #int_0^0.125 f(8t) dt#, (B) #int_0^0.25 f(1−4t) dt#, and (C) #int_0.4^0.5 f(5-10t) dt#

1 Answer
Oct 18, 2017

# int_0^0.125 \ f(8t) \ dt = 19/8#

# int_0^0.25 \ f(1−4t) \ dt = 19/4#

# int_0.4^0.5 \ f(5-10t) \ dt = 9/10#

Explanation:

We have:

# int_0^1 \ f(t) \ dt = 19#

We first note that the above result is independent of the variable #t#, thus:

# int_0^1 \ f(t) \ dt = int_0^1 \ f(u) \ du = 19 #

Part A

Find # I_1 = int_0^0.125 \ f(8t) \ dt#

We can perform a substitution, Let:

#u = 8t => (du)/(dt) = 8 => 1/8(du)/(dt) = 1#

And we change the limits of integration:

# t={ (0), (0.125) :} => u={ (0), (1) :}#

If we substitute into the integral then we get:

# I_1 = int_0^1 \ f(u) \ (1/8) \ du#
# \ \ \ = 1/8 \ int_0^1 \ f(u) \ du#
# \ \ \ = 1/8 * 19#
# \ \ \ = 19/8#

Part B

Find # I_2 = int_0^0.25 \ f(1−4t) \ dt #

We can perform a substitution, Let:

#u = 1-4t => (du)/(dt) = -4 => -1/4(du)/(dt) = 1#

And we change the limits of integration:

# t={ (0), (0.25) :} => u={ (1), (0) :}#

If we substitute into the integral then we get:

# I_2 = int_1^0 \ f(u) \ (-1/4) \ du#
# \ \ \ = -1/4 \ int_1^0 \ f(u) \du#
# \ \ \ = 1/4 \ int_0^1 \ f(u) \du#
# \ \ \ = 1/4 * 19#
# \ \ \ = 19/4#

Part C

Find # I_3 = int_0.4^0.5 \ f(5-10t) \ dt#

We can perform a substitution, Let:

#u = 5-10t => (du)/(dt) = -10 => -1/10(du)/(dt) = 1#

And we change the limits of integration:

# t={ (0.4), (0.5) :} => u={ (1), (0) :}#

If we substitute into the integral then we get:

# I_3 = int_1^0 \ f(u) \ (-1/10) \ du#
# \ \ \ = -1/10 \ int_1^0 \ f(u) du#
# \ \ \ = 1/10 \ int_0^1 \ f(u) du#
# \ \ \ = 1/10 * 19#
# \ \ \ = 19/10#