Prove that 1/(csctheta+1) + 1/(csctheta-1) -= 2sec theta \ tan theta ?

1 Answer
Sep 12, 2017

The identity as quoted is invalid, However:

1/(csctheta+1) + 1/(csctheta-1) -= 2sec theta \ tan theta

Explanation:

The identity as quoted is invalid, However:

We have:

1/(csctheta+1) + 1/(csctheta-1) -= ((csctheta-1) + (csctheta+1))/((csctheta+1)(csctheta-1))

" " = (csctheta-1 + csctheta+1)/(csc^2theta+csctheta-csctheta-1)

" " = (2csctheta)/(csc^2theta-1)

Using the trig identity 1+cot^2A -= csc^2A we have:

1/(csctheta+1) + 1/(csctheta-1) = (2csctheta)/(1+cot^2theta-1)

" " = (2csctheta)/(cot^2theta)

" " = (2csctheta)(tan^2theta)

" " = (2/sintheta)(sin theta)/(cos theta)tan theta

" " = 2/(cos theta)tan theta

" " = 2sec theta \ tan theta