Prove that 1/(csctheta+1) + 1/(csctheta-1) -= 2sec theta \ tan theta ?
1 Answer
The identity as quoted is invalid, However:
1/(csctheta+1) + 1/(csctheta-1) -= 2sec theta \ tan theta
Explanation:
The identity as quoted is invalid, However:
We have:
1/(csctheta+1) + 1/(csctheta-1) -= ((csctheta-1) + (csctheta+1))/((csctheta+1)(csctheta-1))
" " = (csctheta-1 + csctheta+1)/(csc^2theta+csctheta-csctheta-1)
" " = (2csctheta)/(csc^2theta-1)
Using the trig identity
1/(csctheta+1) + 1/(csctheta-1) = (2csctheta)/(1+cot^2theta-1)
" " = (2csctheta)/(cot^2theta)
" " = (2csctheta)(tan^2theta)
" " = (2/sintheta)(sin theta)/(cos theta)tan theta
" " = 2/(cos theta)tan theta
" " = 2sec theta \ tan theta