What is the derivative of y=cot (arctan x) y=cot(arctanx)?
1 Answer
Sep 13, 2017
d/dx cot (arctan x) = -1/x^2 ddxcot(arctanx)=−1x2
Explanation:
We have:
y=cot (arctan x) y=cot(arctanx)
Suppose we let:
tanu = x <=> u = arctan xtanu=x⇔u=arctanx
Then:
cot u = 1/(tan u) = 1/x cotu=1tanu=1x
But, we established that
cot (arctan x) = 1/x cot(arctanx)=1x
Hence, we have:
y = 1/x => dy/dx = -1/x^2 y=1x⇒dydx=−1x2