What is the derivative of y=cot (arctan x) y=cot(arctanx)?

1 Answer
Sep 13, 2017

d/dx cot (arctan x) = -1/x^2 ddxcot(arctanx)=1x2

Explanation:

We have:

y=cot (arctan x) y=cot(arctanx)

Suppose we let:

tanu = x <=> u = arctan xtanu=xu=arctanx

Then:

cot u = 1/(tan u) = 1/x cotu=1tanu=1x

But, we established that u = arctan xu=arctanx, therefore:

cot (arctan x) = 1/x cot(arctanx)=1x

Hence, we have:

y = 1/x => dy/dx = -1/x^2 y=1xdydx=1x2