What is the general solution of the differential equation dy/dx + y^2=4dydx+y2=4?

1 Answer
Sep 16, 2017

y = 2(e^(4x)-16)/(e^(4x)+16)y=2e4x16e4x+16

Explanation:

We have:

dy/dx + y^2=4 dydx+y2=4

We can rearrange this Differential Equation as follows:

dy/dx =4 -y^2 dydx=4y2
:. 1/(4-y^2) dy/dx = 1

This is a First Order separable Differential Equation, so we can "seperate the variables" to get:

int \ 1/( 2^2-y^2) \ dy = int \ dx ..... [A]

Using the standard result:

int \ 1/(a^2-t^2) \ dt = 1/(2a) ln abs( (a+t)/(a-t) )

we can integrate [A], to get:

1/4 ln abs( (2+y)/(2-y) ) = x + C_1
:. ln abs( (2+y)/(2-y) ) = 4x + C

Using the initial condition, x=ln2 when y=0 then:

-ln abs( (2+0)/(2-0) ) = 4ln2 + C
:. 0 = 4ln2 + C
:. C = -4ln2 = - ln16

Thus, the (implicit) solution is:

ln abs( (2+y)/(2-y) ) = 4x - ln16

We can rearrange to get an explicit solution:

:. abs( (2+y)/(2-y) ) = e^(4x - ln16)

Noting that e^x gt 0 AA x in RR, then:

(2+y)/(2-y) = e^(4x)e^(-ln16)
:. (2+y)/(2-y) = e^(4x)/16

For simplicity, Put A=e^(4x)/16 so that:

(2+y)/(2-y) = A
:. 2+y = A(2-y)
:. 2+y = 2A-Ay
:. y+Ay = 2A-2
:. y(A+1) = 2(A-1)
:. y = 2(A-1)/(A+1)

Thus, the solution is:

y = 2(e^(4x)/16-1)/(e^(4x)/16+1)
\ \ = 2(e^(4x)/16-1)/(e^(4x)/16+1) xx 16/16
\ \ = 2(e^(4x)-16)/(e^(4x)+16)