What is the general solution of the differential equation dy/dx + y^2=4dydx+y2=4?
1 Answer
y = 2(e^(4x)-16)/(e^(4x)+16)y=2e4x−16e4x+16
Explanation:
We have:
dy/dx + y^2=4 dydx+y2=4
We can rearrange this Differential Equation as follows:
dy/dx =4 -y^2 dydx=4−y2
:. 1/(4-y^2) dy/dx = 1
This is a First Order separable Differential Equation, so we can "seperate the variables" to get:
int \ 1/( 2^2-y^2) \ dy = int \ dx ..... [A]
Using the standard result:
int \ 1/(a^2-t^2) \ dt = 1/(2a) ln abs( (a+t)/(a-t) )
we can integrate [A], to get:
1/4 ln abs( (2+y)/(2-y) ) = x + C_1
:. ln abs( (2+y)/(2-y) ) = 4x + C
Using the initial condition,
-ln abs( (2+0)/(2-0) ) = 4ln2 + C
:. 0 = 4ln2 + C
:. C = -4ln2 = - ln16
Thus, the (implicit) solution is:
ln abs( (2+y)/(2-y) ) = 4x - ln16
We can rearrange to get an explicit solution:
:. abs( (2+y)/(2-y) ) = e^(4x - ln16)
Noting that
(2+y)/(2-y) = e^(4x)e^(-ln16)
:. (2+y)/(2-y) = e^(4x)/16
For simplicity, Put
(2+y)/(2-y) = A
:. 2+y = A(2-y)
:. 2+y = 2A-Ay
:. y+Ay = 2A-2
:. y(A+1) = 2(A-1)
:. y = 2(A-1)/(A+1)
Thus, the solution is:
y = 2(e^(4x)/16-1)/(e^(4x)/16+1)
\ \ = 2(e^(4x)/16-1)/(e^(4x)/16+1) xx 16/16
\ \ = 2(e^(4x)-16)/(e^(4x)+16)