What is the general solution of the differential equation dy/dx + y = xy^3 ?

Hint: try a substitution z = 1/y^2

1 Answer
Sep 22, 2017

y^2 = 2/(2x + 1 + Ae^(2x) )

Explanation:

We have:

dy/dx + y = xy^3 ..... [A]

As suggested we perform a substitution:

z = 1/y^2 iff y^2 = 1/z

The differentiating wrt x we have:

(dz)/(dy) = -2/y^3 => (dy)/(dz) =-y^3/2

And from the chain rule, we have:

dy/dx = dy/dz * dz/dx = -y^3/2 dz/dx

Substituting into the initial Differential Equation [A], we have:

-y^3/2 dz/dx + y = xy^3

Dividing by y^3 we have:

-1/2 dz/dx + 1/y^2 = x

:. -1/2 dz/dx + 1/(1/z) = x

:. dz/dx -2z = -2x ..... [B}

This substitution has reduced the equation [A] to a Ordinary Differential Equation of the form, which can be solved using an integrating Factor;

dz/dx + P(x)z=Q(x)

Then the integrating factor is given by;

I = e^(int P(x) dx)
\ \ = exp(int \ -2 \ dx)
\ \ = exp( -2x )
\ \ = e^(-2x)

And if we multiply the DE [B] by this Integrating Factor, I, we will have a perfect product differential;

dz/dx e^(-2x) -2e^(-2x) z= -2xe^(-2x)
:. d/dx( e^(-2x)z) = -2xe^(-2x)

We can now "separate the variables", to get:

e^(-2x)z = -2 \ int \ xe^(-2x) \ dx ..... [C]

To integrate this integral we will require an application of Integration By Parts:

Let { (u,=x, => (du)/dx,=1), ((dv)/dx,=e^(-2x), => v,=-1/2e^(-2x) ) :}

Then plugging into the IBP formula:

int \ (u)((dv)/dx) \ dx = (u)(v) - int \ (v)((du)/dx) \ dx

gives us

int \ (x)(e^(-2x)) \ dx = (x)(-1/2e^(-2x)) - int \ (-1/2e^(-2x))(1) \ dx
:. int \ xe^(-2x) \ dx = -1/2 xe^(-2x) + 1/2 int \ e^(-2x) \ dx
:. int \ xe^(-2x) \ dx = -1/2 xe^(-2x) -1/4 e^(-2x)

Using this result, we can now integrate [C] to get:

e^(-2x)z = -2 {-1/2 xe^(-2x) -1/4 e^(-2x) } +c

:. ze^(-2x) = xe^(-2x) +1/2 e^(-2x) +c

:. z = x +1/2 +c e^(2x)

Restoring the substitution we get:

:. 1/y^2 = 1/2(2x +1 +2ce^(2x) )

:. y^2 = 2/(2x +1 +2ce^(2x) )

Which we can write as:

y^2 = 2/(2x + 1 + Ae^(2x) )

Which is the general solution, or:

y = +-sqrt(2/(2x + 1 + Ae^(2x) ))

The initial conditions are invalid as y is given as a function, rather than a value!