What is the general solution of the differential equation dy/dx + y = xy^3 ?
Hint: try a substitution z = 1/y^2
Hint: try a substitution
1 Answer
y^2 = 2/(2x + 1 + Ae^(2x) )
Explanation:
We have:
dy/dx + y = xy^3 ..... [A]
As suggested we perform a substitution:
z = 1/y^2 iff y^2 = 1/z
The differentiating wrt
(dz)/(dy) = -2/y^3 => (dy)/(dz) =-y^3/2
And from the chain rule, we have:
dy/dx = dy/dz * dz/dx = -y^3/2 dz/dx
Substituting into the initial Differential Equation [A], we have:
-y^3/2 dz/dx + y = xy^3
Dividing by
-1/2 dz/dx + 1/y^2 = x
:. -1/2 dz/dx + 1/(1/z) = x
:. dz/dx -2z = -2x ..... [B}
This substitution has reduced the equation [A] to a Ordinary Differential Equation of the form, which can be solved using an integrating Factor;
dz/dx + P(x)z=Q(x)
Then the integrating factor is given by;
I = e^(int P(x) dx)
\ \ = exp(int \ -2 \ dx)
\ \ = exp( -2x )
\ \ = e^(-2x)
And if we multiply the DE [B] by this Integrating Factor,
dz/dx e^(-2x) -2e^(-2x) z= -2xe^(-2x)
:. d/dx( e^(-2x)z) = -2xe^(-2x)
We can now "separate the variables", to get:
e^(-2x)z = -2 \ int \ xe^(-2x) \ dx ..... [C]
To integrate this integral we will require an application of Integration By Parts:
Let
{ (u,=x, => (du)/dx,=1), ((dv)/dx,=e^(-2x), => v,=-1/2e^(-2x) ) :}
Then plugging into the IBP formula:
int \ (u)((dv)/dx) \ dx = (u)(v) - int \ (v)((du)/dx) \ dx
gives us
int \ (x)(e^(-2x)) \ dx = (x)(-1/2e^(-2x)) - int \ (-1/2e^(-2x))(1) \ dx
:. int \ xe^(-2x) \ dx = -1/2 xe^(-2x) + 1/2 int \ e^(-2x) \ dx
:. int \ xe^(-2x) \ dx = -1/2 xe^(-2x) -1/4 e^(-2x)
Using this result, we can now integrate [C] to get:
e^(-2x)z = -2 {-1/2 xe^(-2x) -1/4 e^(-2x) } +c
:. ze^(-2x) = xe^(-2x) +1/2 e^(-2x) +c
:. z = x +1/2 +c e^(2x)
Restoring the substitution we get:
:. 1/y^2 = 1/2(2x +1 +2ce^(2x) )
:. y^2 = 2/(2x +1 +2ce^(2x) )
Which we can write as:
y^2 = 2/(2x + 1 + Ae^(2x) )
Which is the general solution, or:
y = +-sqrt(2/(2x + 1 + Ae^(2x) ))
The initial conditions are invalid as