What is the general solution of the differential equation? cosy(ln(secx+tanx))dx=cosx(ln(secy+tany))dy cosy(ln(secx+tanx))dx=cosx(ln(secy+tany))dy
1 Answer
sec^2y = sec^2x + C sec2y=sec2x+C
Explanation:
We have:
cosy(ln(secx+tanx))dx=cosx(ln(secy+tany))dy cosy(ln(secx+tanx))dx=cosx(ln(secy+tany))dy ..... [A]
If we rearrange this ODE from differential form into standard form we have:
(ln(secy+tany))/Cosydy/dx = (ln(secx+tanx))/ cosx ln(secy+tany)cosydydx=ln(secx+tanx)cosx
This is now a separable ODE, do we can "separate the variables" to give:
int \ (ln(secy+tany))/Cosy \ dy = int \ (ln(secx+tanx))/ cosx \ dx ..... [B}
Consider the RHS integral:
I = int \ (ln(secx+tanx))/ cosx \ dx
\ \ = int \ secx \ (ln(secx+tanx)) \ dx
We can perform a substitution:
u = sec x => (du)/dx = ln|secx+tanx|
if we substitute this into the integral we get:
I = int \ u \ du = 1/2u^2+A
\ \ = 1/2sec^2x + A
Using this result we can now integrate both sides of [B] to get:
1/2sec^2y = 1/2sec^2x + A
:. sec^2y = sec^2x + C
Which is the General Solution of [A]