Solve the trigonometric equation tantheta+cottheta=2tanθ+cotθ=2?

2 Answers
Oct 8, 2017

theta=npi+pi/4θ=nπ+π4

Explanation:

tantheta+cottheta=2tanθ+cotθ=2

i.e. sintheta/costheta+costheta/sintheta=2sinθcosθ+cosθsinθ=2

or (sin^2theta+cos^2theta)/(sinthetacostheta)=2sin2θ+cos2θsinθcosθ=2

or 1/(sinthetacostheta)=21sinθcosθ=2

or 2sinthetacostheta=12sinθcosθ=1

or sin2theta=sin(pi/2)sin2θ=sin(π2)

Hence 2theta=2npi+pi/22θ=2nπ+π2

or theta=npi+pi/4θ=nπ+π4

Oct 8, 2017

tantheta+cottheta=2tanθ+cotθ=2

=>tantheta+1/tantheta=2tanθ+1tanθ=2

=>tan^2theta-2tantheta+1=0tan2θ2tanθ+1=0

=>(tantheta-1)^2=0(tanθ1)2=0

=>tantheta=1=tan(pi/4)tanθ=1=tan(π4)

=>theta=npi+pi/4" where "n in ZZ