Prove that? : arcsin ( (x-1)/(x+1) ) = 2arctan sqrt(x) - pi/2
2 Answers
We wish to show that:
arcsin ( (x-1)/(x+1) ) = 2arctan sqrt(x) - pi/2
Define a function
f(x) = arcsin ( (x-1)/(x+1) ) - 2arctan sqrt(x) + pi/2 ..... [A]
Put
f(0) = arcsin ( -1 ) - 2arctan 0 + pi/2
\ \ \ \ \ \ \ = -pi/2 - 0 + pi/2
\ \ \ \ \ \ \ = 0
We can use the standard derivatives:
{: (ul("Function"), ul("Derivative"), ul("Notes")), (f(x), f'(x),), (sin^(-1)x, 1/sqrt(1-x^2), ), (tan^(-1)x, 1/(1+x^2), ) :}
So if we differentiate [A] and apply the chain rule, and quotient rule, we have:
f'(x) = 1/sqrt(1-((x-1)/(x+1))^2)d/dx ((x-1)/(x+1)) - 2/(1+(sqrt(x))^2)d/dx(sqrt(x))
\ \ \ \ \ \ \ = 1/sqrt(1-(x-1)^2/(x+1)^2) ( (x+1)(1) - (x-1)(1) ) / (x+1)^2 - 2/(1+x) 1/(2sqrt(x))
\ \ \ \ \ \ \ = 1/sqrt( ( (x+1)^2 -(x-1)^2) /(x+1)^2) ( x+1 - x + 1 ) / (x+1)^2 - 1/((1+x)sqrt(x))
\ \ \ \ \ \ \ = sqrt( (x+1)^2 / ( (x+1)^2 -(x-1)^2) ) * ( 2 ) / (x+1)^2 - 1/((1+x)sqrt(x))
\ \ \ \ \ \ \ = sqrt( (x+1)^2 / ( (x+1+x-1)(x+1-x+1) ) ) * ( 2 ) / (x+1)^2 - 1/((1+x)sqrt(x))
\ \ \ \ \ \ \ = sqrt( (x+1)^2 / ( (2x)(2) ) ) * ( 2 ) / (x+1)^2 - 1/((1+x)sqrt(x))
\ \ \ \ \ \ \ = (x+1)/(2sqrt(x)) * ( 2 ) / (x+1)^2 - 1/((1+x)sqrt(x))
\ \ \ \ \ \ \ = 1/(sqrt(x)) * ( 1 ) / (x+1) - 1/((1+x)sqrt(x))
\ \ \ \ \ \ \ = 0
So the function
f(x) = c
We established earlier that
c = 0
Hence we have:
\ \ \ \ arcsin ( (x-1)/(x+1) ) - 2arctan sqrt(x) + pi/2 = 0
:. arcsin ( (x-1)/(x+1) ) = 2arctan sqrt(x) - pi/2 QED
Let
So
Now