Prove that? : # arcsin ( (x-1)/(x+1) ) = 2arctan sqrt(x) - pi/2 #

2 Answers
Oct 9, 2017

We wish to show that:

# arcsin ( (x-1)/(x+1) ) = 2arctan sqrt(x) - pi/2 #

Define a function #f(x)# by:

# f(x) = arcsin ( (x-1)/(x+1) ) - 2arctan sqrt(x) + pi/2 # ..... [A]

Put #x=0# and we get:

# f(0) = arcsin ( -1 ) - 2arctan 0 + pi/2 #
# \ \ \ \ \ \ \ = -pi/2 - 0 + pi/2 #
# \ \ \ \ \ \ \ = 0 #

We can use the standard derivatives:

# {: (ul("Function"), ul("Derivative"), ul("Notes")), (f(x), f'(x),), (sin^(-1)x, 1/sqrt(1-x^2), ), (tan^(-1)x, 1/(1+x^2), ) :} #

So if we differentiate [A] and apply the chain rule, and quotient rule, we have:

# f'(x) = 1/sqrt(1-((x-1)/(x+1))^2)d/dx ((x-1)/(x+1)) - 2/(1+(sqrt(x))^2)d/dx(sqrt(x)) #

# \ \ \ \ \ \ \ = 1/sqrt(1-(x-1)^2/(x+1)^2) ( (x+1)(1) - (x-1)(1) ) / (x+1)^2 - 2/(1+x) 1/(2sqrt(x)) #

# \ \ \ \ \ \ \ = 1/sqrt( ( (x+1)^2 -(x-1)^2) /(x+1)^2) ( x+1 - x + 1 ) / (x+1)^2 - 1/((1+x)sqrt(x)) #

# \ \ \ \ \ \ \ = sqrt( (x+1)^2 / ( (x+1)^2 -(x-1)^2) ) * ( 2 ) / (x+1)^2 - 1/((1+x)sqrt(x)) #

# \ \ \ \ \ \ \ = sqrt( (x+1)^2 / ( (x+1+x-1)(x+1-x+1) ) ) * ( 2 ) / (x+1)^2 - 1/((1+x)sqrt(x)) #

# \ \ \ \ \ \ \ = sqrt( (x+1)^2 / ( (2x)(2) ) ) * ( 2 ) / (x+1)^2 - 1/((1+x)sqrt(x)) #

# \ \ \ \ \ \ \ = (x+1)/(2sqrt(x)) * ( 2 ) / (x+1)^2 - 1/((1+x)sqrt(x)) #

# \ \ \ \ \ \ \ = 1/(sqrt(x)) * ( 1 ) / (x+1) - 1/((1+x)sqrt(x)) #

# \ \ \ \ \ \ \ = 0 #

So the function #f(x)# has a zero derivative everywhere, and therefore integrating we have:

# f(x) = c #

We established earlier that #f(0)=0 => f(0) = c = 0#, Hence:

# c = 0 #

Hence we have:

# \ \ \ \ arcsin ( (x-1)/(x+1) ) - 2arctan sqrt(x) + pi/2 = 0 #

# :. arcsin ( (x-1)/(x+1) ) = 2arctan sqrt(x) - pi/2 # QED

Oct 20, 2017

Let #RHS=2tan^-1(sqrtx)-pi/2=y#

So #coty =cot(2tan^-1(sqrtx)-pi/2) #

#=>coty =-cot(pi/2-2tan^-1(sqrtx)) #

#=>coty =-tan(2tan^-1(sqrtx)) #

#=>coty =-(2tantan^-1(sqrtx))/(1-(tantan^-1(sqrtx) )^2#

#=>coty =-(2sqrt(x))/(1-((sqrtx) )^2#

#=>coty =-(2sqrt(x))/(1-x) #

#=>coty =(2sqrt(x))/(x-1) #

Now
#csc^2y=1+cot^2y#

#=>csc^2y=1+(4x)/(x-1)^2#

#=>csc^2y=((x-1)^2+4x)/(x-1)^2#

#=>csc^2y=(x+1)^2/(x-1)^2#

#=>cscy=(x+1)/(x-1)#

#=>siny=(x-1)/(x+1)#

#=>y=sin^-1((x-1)/(x+1))=LHS#