Prove that? : # arcsin ( (x-1)/(x+1) ) = 2arctan sqrt(x) - pi/2 #
2 Answers
We wish to show that:
# arcsin ( (x-1)/(x+1) ) = 2arctan sqrt(x) - pi/2 #
Define a function
# f(x) = arcsin ( (x-1)/(x+1) ) - 2arctan sqrt(x) + pi/2 # ..... [A]
Put
# f(0) = arcsin ( -1 ) - 2arctan 0 + pi/2 #
# \ \ \ \ \ \ \ = -pi/2 - 0 + pi/2 #
# \ \ \ \ \ \ \ = 0 #
We can use the standard derivatives:
# {: (ul("Function"), ul("Derivative"), ul("Notes")), (f(x), f'(x),), (sin^(-1)x, 1/sqrt(1-x^2), ), (tan^(-1)x, 1/(1+x^2), ) :} #
So if we differentiate [A] and apply the chain rule, and quotient rule, we have:
# f'(x) = 1/sqrt(1-((x-1)/(x+1))^2)d/dx ((x-1)/(x+1)) - 2/(1+(sqrt(x))^2)d/dx(sqrt(x)) #
# \ \ \ \ \ \ \ = 1/sqrt(1-(x-1)^2/(x+1)^2) ( (x+1)(1) - (x-1)(1) ) / (x+1)^2 - 2/(1+x) 1/(2sqrt(x)) #
# \ \ \ \ \ \ \ = 1/sqrt( ( (x+1)^2 -(x-1)^2) /(x+1)^2) ( x+1 - x + 1 ) / (x+1)^2 - 1/((1+x)sqrt(x)) #
# \ \ \ \ \ \ \ = sqrt( (x+1)^2 / ( (x+1)^2 -(x-1)^2) ) * ( 2 ) / (x+1)^2 - 1/((1+x)sqrt(x)) #
# \ \ \ \ \ \ \ = sqrt( (x+1)^2 / ( (x+1+x-1)(x+1-x+1) ) ) * ( 2 ) / (x+1)^2 - 1/((1+x)sqrt(x)) #
# \ \ \ \ \ \ \ = sqrt( (x+1)^2 / ( (2x)(2) ) ) * ( 2 ) / (x+1)^2 - 1/((1+x)sqrt(x)) #
# \ \ \ \ \ \ \ = (x+1)/(2sqrt(x)) * ( 2 ) / (x+1)^2 - 1/((1+x)sqrt(x)) #
# \ \ \ \ \ \ \ = 1/(sqrt(x)) * ( 1 ) / (x+1) - 1/((1+x)sqrt(x)) #
# \ \ \ \ \ \ \ = 0 #
So the function
# f(x) = c #
We established earlier that
# c = 0 #
Hence we have:
# \ \ \ \ arcsin ( (x-1)/(x+1) ) - 2arctan sqrt(x) + pi/2 = 0 #
# :. arcsin ( (x-1)/(x+1) ) = 2arctan sqrt(x) - pi/2 # QED
Let
So
Now