What is the derivative of? : y=3tan^(-1)(x+sqrt(1+x^2) ) y=3tan1(x+1+x2)

1 Answer
Oct 19, 2017

dy/dx = ( 3(1+x/(sqrt(1+x^2))))/(1+(x+sqrt(1+x^2))^2) dydx=3(1+x1+x2)1+(x+1+x2)2

Explanation:

We seek (I assume):

dy/dx dydx where y=3tan^(-1)(x+sqrt(1+x^2) ) y=3tan1(x+1+x2)

We will need the standard result:

d/dx tan^(-1)x = 1/(1+x^2) ddxtan1x=11+x2

And the power rule, in conjunction with the chain rule, for:

d/dx (x+ sqrt(1+x^2) ) = 1+d/dx (1+x^2)^(1/2)ddx(x+1+x2)=1+ddx(1+x2)12
" " = 1+1/2(1+x^2)^(-1/2) d/dx (1+x^2) =1+12(1+x2)12ddx(1+x2)
" " = 1+1/(2sqrt(1+x^2)) (2x) =1+121+x2(2x)
" " = 1+x/(sqrt(1+x^2)) =1+x1+x2

Then we can apply the product rule to the original function to get:

dy/dx = 3 {1/(1+(x+sqrt(1+x^2))^2) } d/dx (x+sqrt(1+x^2) ) dydx=3⎪ ⎪⎪ ⎪11+(x+1+x2)2⎪ ⎪⎪ ⎪ddx(x+1+x2)
\ \ \ \ \ = 3 {1/(1+(x+sqrt(1+x^2))^2) } {1+x/(sqrt(1+x^2))}
\ \ \ \ \ = ( 3(1+x/(sqrt(1+x^2))))/(1+(x+sqrt(1+x^2))^2)