Find the area bounded by the polar curves? r=4+4cos thetar=4+4cosθ and r=6r=6

1 Answer
Oct 19, 2017

Bounded Area = 18sqrt(3) - 4pi 1834π

Explanation:

r=4+4costheta \ \ \ \ \ \ (color(red)(red))
r=6 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (color(blue)(blue))

The area we seek is shaded in grey.

Steve M using Autograph

Let us first find the points of intersection:

4+4costheta=6
:. 4cos theta = 2
:. cos theta = 1/2
:. theta = +-pi/3

We calculate area in polar coordinates using :

A = 1/2 \ int_alpha^beta \ r^2 \ d theta

The area bounded by r=4+4costheta and r=+-pi/3 is:

A_1 = 1/2 \ int_(-pi/3)^(pi/3) \ (4+4costheta)^2 \ d theta
\ \ \ \ = 1/2 \ int_(-pi/3)^(pi/3) \ 16(1+costheta)^2 \ d theta
\ \ \ \ = 8 \ int_(-pi/3)^(pi/3) \ 1+2costheta+cos^2theta \ d theta
\ \ \ \ = 8 \ int_(-pi/3)^(pi/3) \ 1+2costheta+(1+cos2theta)/2 \ d theta
\ \ \ \ = 8 \ int_(-pi/3)^(pi/3) \ 1+2costheta+1/2+(cos2theta)/2 \ d theta
\ \ \ \ = 8 \ int_(-pi/3)^(pi/3) \ 3/2+2costheta+(cos2theta)/2 \ d theta
\ \ \ \ = 8 [3/2theta+2sintheta+(sin2theta)/4]_(-pi/3)^(pi/3)

\ \ \ \ = 8 { (3/2(pi/3) + 2sin(pi/3)+1/4sin((2pi)/3)) - (3/2(-pi/3) + 2sin(-pi/3)+1/4sin((-2pi)/3))}

\ \ \ \ = 8 { ( pi/2 + 2sqrt(3)/2+1/4sqrt(3)/2) - (-pi/2 - 2sqrt(3)/2-1/4sqrt(3)/2)}

\ \ \ \ = 8 { pi/2 + 2sqrt(3)/2+1/4sqrt(3)/2 +pi/2 + 2sqrt(3)/2+1/4sqrt(3)/2}

\ \ \ \ = 8 { pi + 2sqrt(3)+1/4sqrt(3)}

\ \ \ \ = 8pi + 18sqrt(3)

The area bounded by r=6 and r=+-pi/3 is a sector of angle (2pi)/3 so we can use the sector area 1/2r^2theta

A_2 = 1/2(6^2)(2pi)/3
\ \ \ \ = 1/2 xx 36 xx (2pi)/3
\ \ \ \ = 12pi

Then, the difference is:

A = A_1 - A_2
\ \ \ = (8pi + 18sqrt(3)) - (12pi)
\ \ \ = 18sqrt(3) - 4pi

Note:

We could also construct a single integral to get the solution using:

A = 1/2 \ int_(-pi/3)^(pi/3) \ (4+4costheta)^2 - (6)^2 \ d theta