Calculate the length of the arc of y = 2x-x^2 for #x in [0,2]?
1 Answer
Arc Length
~~ 2.970 to 3dp
Explanation:
Arc Length is given by:
L = int_alpha^beta \ sqrt(1+(dy/dx)^2) \ dx
We have:
y = 2x-x^2
Differentiating wrt
dy/dx = 2-2x
So the Required Arc Length, is given by:
L = int_0^2 \ sqrt( 1 + (2-2x)^2 ) \ dx
\ \ = int_0^2 \ sqrt( 1 + 4-8x+4x^2 ) \ dx
\ \ = int_0^2 \ sqrt( 4x^2-8x+5 ) \ dx
Now, let us estimate this integral numerically by using the Trapezium rules with
![]()
A = 0.2/2 * { 2.236068 + 2.236068 +
\ \ \ \ \ \ \ \ \ 2*(1.886796 + 1.56205 + 1.280625 + 1.077033 +
\ \ \ \ \ \ \ \ \ 1 + 1.077033 + 1.280625 + 1.56205 + 1.886796) }
\ \ \ = 0.1 * { 4.472136 + 2*(12.613008) }
\ \ \ = 0.1 * { 4.472136 + 25.226016 }
\ \ \ = 0.1 * 29.698152
\ \ \ = 2.969815
So we estimate that:
L = 2.970 to 3dp
Actual Value
As it happens this integral can be evaluated and we find that
L = 1/2(sinh^(-1)(2)+2sqrt(5)) = 2.957885715089195