How do you express sin(2x)+sin(4x) in terms of sin(x) and cos(x) ?

1 Answer
Nov 17, 2017

In terms of sin(x) and cos(x) we find:

sin(2x)+sin(4x) = 2 sin(x)cos(x)(1 + 2 cos^2(x) - 2 sin^2(x))

Explanation:

Note that:

sin(2x) = 2 sin(x)cos(x)

cos(2x) = cos^2(x) - sin^2(x)

So:

sin(4x) = sin(2(2x))

color(white)(sin(4x)) = 2 sin(2x)(cos(2x)

color(white)(sin(4x)) = 2(2sin(x)cos(x))(cos^2(x)-sin^2(x))

color(white)(sin(4x)) = 4sin(x)cos^3(x)-4sin^3(x)cos(x)

So:

sin(2x)+sin(4x) = 2 sin(x)cos(x) + 4sin(x)cos^3(x)-4sin^3(x)cos(x)

color(white)(sin(2x)+sin(4x)) = 2 sin(x)cos(x)(1 + 2 cos^2(x) - 2 sin^2(x))