Convert (x+2)^2 + (y+3)^2 = 13 into polar form?

1 Answer
Oct 30, 2017

r =- 4costheta - 6sintheta

Explanation:

Putting:

x = rcos theta
y = rsin theta

Into the cartesian equation:

(x+2)^2 + (y+3)^2 = 13

we have:

(rcos theta+2)^2 + (rsin theta+3)^2 = 13

:. r^2cos^2 theta+4rcostheta + 4 + r^2sin^2theta+6rsintheta+9 = 13

:. r^2(cos^2 theta + sin^2theta) + 4rcostheta + 6rsintheta+13 = 13

:. r^2 + 4rcostheta + 6rsintheta = 0

:. r(r + 4costheta + 6sintheta) = 0

Leading to two possibilities:

{ (r = 0), (r =- 4costheta - 6sintheta) :}

Note that the second equation encompases the first when:

6sintheta = 4costheta => tan theta = 2/3

Hence the Polar equation we seek is:

r =- 4costheta - 6sintheta

Steve M using Autograph