Convert (x+2)^2 + (y+3)^2 = 13 into polar form?
1 Answer
Oct 30, 2017
r =- 4costheta - 6sintheta
Explanation:
Putting:
x = rcos theta
y = rsin theta
Into the cartesian equation:
(x+2)^2 + (y+3)^2 = 13
we have:
(rcos theta+2)^2 + (rsin theta+3)^2 = 13
:. r^2cos^2 theta+4rcostheta + 4 + r^2sin^2theta+6rsintheta+9 = 13
:. r^2(cos^2 theta + sin^2theta) + 4rcostheta + 6rsintheta+13 = 13
:. r^2 + 4rcostheta + 6rsintheta = 0
:. r(r + 4costheta + 6sintheta) = 0
Leading to two possibilities:
{ (r = 0), (r =- 4costheta - 6sintheta) :}
Note that the second equation encompases the first when:
6sintheta = 4costheta => tan theta = 2/3
Hence the Polar equation we seek is:
r =- 4costheta - 6sintheta