Find the derivative using first principles? : 2sqrt(x)

1 Answer
Dec 25, 2017

f'(x)=1/sqrt(x)

Explanation:

We have:

f(x)=2sqrt(x)

Then the limit definition of the derivative tells us that;

f'(x) = lim_(h rarr 0) ( f(x+h)-f(x) ) / h

\ \ \ \ \ \ \ \ \ = lim_(h rarr 0) ( 2sqrt(x+h)-2sqrt(x) ) / h

\ \ \ \ \ \ \ \ \ = 2lim_(h rarr 0) ( (sqrt(x+h)-sqrt(x)) ) / h * (sqrt(x+h)+sqrt(x))/(sqrt(x+h)+sqrt(x))

\ \ \ \ \ \ \ \ \ = 2lim_(h rarr 0) ( (x+h)-x ) / (h(sqrt(x+h)+sqrt(x))

\ \ \ \ \ \ \ \ \ = 2lim_(h rarr 0) ( (h ) / (h(sqrt(x+h)+sqrt(x))

\ \ \ \ \ \ \ \ \ = 2lim_(h rarr 0) 1 / (sqrt(x+h)+sqrt(x))

Which we can evaluate, leading to the result:

f'(x) = 2 * 1 / (sqrt(x)+sqrt(x))
\ \ \ \ \ \ \ \ \ = 1 / (sqrt(x))