What is the general solution of the differential equation e^(dy/dx) = x edydx=x?

2 Answers
Nov 4, 2017

dy/dx=ln xdydx=lnx

Explanation:

If e^(dy/dx)=xedydx=x
then taking the natural log of both sides:
LS=ln(e^(dy/dx))=dy/dx=ln(edydx)=dydx
and
RS=ln(x)=ln(x)

Nov 4, 2017

y = xlnx-x + C y=xlnxx+C

Explanation:

We have:

e^(dy/dx) = x edydx=x

Taking Natural logarithms we have:

dy/dx = ln x dydx=lnx

Which is a separable Differential Equation, so we can separate the variables to get:

y = int \ ln \ dx + C

We can apply integration by Parts

Let { (u,=lnx, => (du)/dx,=1/x), ((dv)/dx,=1, => v,=x ) :}

Then plugging into the IBP formula:

int \ (u)((dv)/dx) \ dx = (u)(v) - int \ (v)((du)/dx) \ dx

gives us

int \ (lnx)(1) \ dx = (lnx)(x) - int \ (x)(1/x) \ dx
:. int \ lnx \ dx = xlnx - int 1 \ dx
:. int \ lnx \ dx = xlnx - x

Thus we have the GS:

y = xlnx-x + C