Question #d2780

1 Answer
Nov 6, 2017

1/(2sqrt3)tan^-1(1/sqrt3*tan2x)+C.123tan1(13tan2x)+C.

Explanation:

Part I :

Let, I=int1/(2cos^2 2x+1)dx,I=12cos22x+1dx,

=int1/{cos^2 2x(2+1/cos^2(2x))}dx,=1cos22x(2+1cos2(2x))dx,

=int(1/cos^2 (2x))/(2+sec^2 2x)dx,=1cos2(2x)2+sec22xdx,

=int(sec^2 2x)/{2+(1+tan^2 2x)}dx,=sec22x2+(1+tan22x)dx,

:. I=int(sec^2 2x)/(3+tan^2 2x)dx.

We subst. tan 2x=y," so that, "(sec^2 2x)(2)dx=dy.

:. I=int((1/2)dy)/(3+y^2),

=1/2*1/sqrt3*tan^-1(y/sqrt3),

rArr I=1/(2sqrt3)tan^-1(1/sqrt3*tan2x)+C.

Part II :

It is not clear that what is to be integrated.