Question #56c3f

1 Answer
Nov 7, 2017

(dy)/(dx)=-2cos(x^2+1)e^(-2x)(2xsin(x^2+1)+cos(x^2+1))

Explanation:

y=e^(-2x)cos^2(x^2+1)=uv

If y=f(x)g(x) => (dy)/(dx)=f(x)g'(x)+f'(x)g(x)

f(x)=e^(-2x)
f'(x)=-2e^(-2x)

g(x)=cos^2(x^2+1)=(cos(x^2+1))^2
g'(x)=2cos(x^2+1) * d/dx[cos(x^2+1)]
g'(x)=2cos(x^2+1) * -2xsin(x^2+1)
g'(x)=-4xsin(x^2+1)cos(x^2+1)

(dy)/(dx)=-4xsin(x^2+1)cos(x^2+1)e^(-2x)-2e^(-2x)cos^2(x^2+1)=-2cos(x^2+1)e^(-2x)(2xsin(x^2+1)+cos(x^2+1))