Question #0be98

2 Answers
Nov 8, 2017

x~~3.53 or x~~-4.53x3.53orx4.53

Explanation:

log(x+3)+log(x-2)=1log(x+3)+log(x2)=1

Using the addition rule, we get:
log(x^2+x-6)=1log(x2+x6)=1

10^(log(x^2+x-6))=10^1=1010log(x2+x6)=101=10

x^2+x-6=10x2+x6=10

x^2+x-16=0x2+x16=0

x=(-b+-sqrt(b^2-4ac))/(2a)x=b±b24ac2a

x=(-1-sqrt(1^2-4(-16)))/2=(-1-sqrt(65))/2~~3.53x=1124(16)2=16523.53

x=(-1+sqrt(1^2-4(-16)))/2=(-1+sqrt(65))/2~~-4.53x=1+124(16)2=1+6524.53

Nov 18, 2017

x=-1/2+sqrt65/2~~3.53x=12+6523.53

Explanation:

log(x+3)+log(x-2)= 1log(x+3)+log(x2)=1
log[(x + 3)(x-2)]=1log[(x+3)(x2)]=1
x^2+x-6=10x2+x6=10
x^2+x+(1/2)^2=10+6+1/4x2+x+(12)2=10+6+14
(x+1/2)^2= 65/4(x+12)2=654
x+1/2=+-sqrt65/2x+12=±652
x=-1/2+-sqrt65/2x=12±652
x~~ -4.53, 3.53x4.53,3.53 => reject the negative root, since it's not in the domain and makes the equation undefined thus it's an "Extraneous"
root.
therefore:
x~~3.53x3.53 => the only valid solution