Solve the Differential Equation (1+x^2)y'+4xy=(1+x^2)^-2 ?

1 Answer
Nov 9, 2017

y = arctan(x)/(1+x^2)^2 + C/(1+x^2)^2

Explanation:

We have:

(1+x^2)y'+4xy=(1+x^2)^-2 ..... [A]

We can rearrange [A] as follows:

(1+x^2)y'+4xy = 1/(1+x^2)^2

dy/dx + (4x)/(1+x^2)y = 1/(1+x^2)^3 ..... [B]

We can use an integrating factor when we have a First Order Linear non-homogeneous Ordinary Differential Equation of the form;

dy/dx + P(x)y=Q(x)

So we form an Integrating Factor;

I = e^(int P(x) dx)
\ \ = exp(int \ (4x)/(1+x^2) \ dx)
\ \ = exp(2 \ int \ (2x)/(1+x^2) \ dx)
\ \ = exp(2 \ ln(1+x^2))
\ \ = exp(ln(1+x^2)^2)
\ \ = (1+x^2)^2

And if we multiply the DE [B] by this Integrating Factor, I, we will have a perfect product differential;

(1+x^2)^2 \ dy/dx + (4x(1+x^2)^2)/(1+x^2)y = (1+x^2)^2 /(1+x^2)^3
:. d/dx( (1+x^2)^2 \ y ) = 1 /(1+x^2)

Which we can directly integrate to get:

(1+x^2)^2 \ y = int \ 1 /(1+x^2) \ dx

The RHS is a standard integral, so integrating we get:

(1+x^2)^2 \ y = arctan(x) + C

Leading to the General Solution:

y = arctan(x)/(1+x^2)^2 + C/(1+x^2)^2