Simplify cot theta - tan theta ?
1 Answer
Nov 12, 2017
cot theta - tan theta -= 2cot(2theta)
Explanation:
We can write the expression as:
cot theta - tan theta -= costheta/sintheta - sintheta/costheta
" " = (costheta costheta - sintheta sintheta)/(sinthetacostheta
" " = (cos^2theta - sin^2theta)/(sinthetacostheta
And using the identities:
sin2A-= 2sinAcosA
cos2A-= cos^2A-sin^2A
We have:
cot theta - tan theta -= (cos2theta)/(1/2sin2theta
" " = 2cot(2theta)
We can verify the graphically:
cot theta - tan theta
graph{cot x - tan x [-10, 10, -5, 5]}
2cot(2theta)
graph{2cot(2x) [-10, 10, -5, 5]}