Simplify cot theta - tan theta ?

1 Answer
Nov 12, 2017

cot theta - tan theta -= 2cot(2theta)

Explanation:

We can write the expression as:

cot theta - tan theta -= costheta/sintheta - sintheta/costheta

" " = (costheta costheta - sintheta sintheta)/(sinthetacostheta

" " = (cos^2theta - sin^2theta)/(sinthetacostheta

And using the identities:

sin2A-= 2sinAcosA
cos2A-= cos^2A-sin^2A

We have:

cot theta - tan theta -= (cos2theta)/(1/2sin2theta

" " = 2cot(2theta)

We can verify the graphically:

cot theta - tan theta
graph{cot x - tan x [-10, 10, -5, 5]}

2cot(2theta)
graph{2cot(2x) [-10, 10, -5, 5]}