How do you solve 2sin(x)-3cot(x)-3csc(x)=0 for x?

2 Answers
Nov 13, 2017

x=n360+-180, n360+-120
x=2n\pi+-\pi, 2n\pi+-(2\pi)/3

Explanation:

The equation can be rewritten as (2sinx)/1-(3cosx)/sinx-3/sinx=0

If we multiply both sides by sinx we get 2sin^2x-3cosx-3=0

Using the identity: sin^2x+cos^2x-=1 We can find that sin^2x-=1-cos^2x

So, 2(1-cos^2x)-3cosx-3=0

2-2cos^2x-3cosx-3=-2cos^2x-3cosx-1=0

2cos^2x+3cosx+1=0

By substituting x for cos we get: 2x^2+3x+1=0

x=(-b+-sqrt(b^2-4ac))/(2a)

x=(-3+sqrt(3^2-4(2*1)))/(2(2))=-1/2

x=(-3-sqrt(3^2-4(2*1)))/(2(2))=-1

cosx=-1 or -1/2

x=arccos(-1)=180
x=arccos(-1/2)=120

However, cos(360+180)=-1 and cos(360-120)=-1/2

x=n360+-180, n360+-120
x=2n\pi+-\pi, 2n\pi+-(2\pi)/3

Nov 13, 2017

For x in [0,pi)
color(white)("XXX")x=(2pi)/3

Explanation:

Note that neither cot(x) nor csc(x) are defined for x=kpi, k in ZZ

So the given equation
color(white)("XXX")2sin(x)-3cot(x)-3csc(x)=0
is not valid for x=0

Multiplying by sin(x)
color(white)("XXX")2sin^2(x)-3cos(x)-3=0

color(white)("XXX")2(1-cos^2(x))-3cos(x)-3=0

color(white)("XXX")-2cos^2(x)-3cos(x)-1=0

color(white)("XXX")2cos^2(x)+3cos(x)+1=0

color(white)("XXX")(2cos(x)+1)(cos(x)+1)=0

color(white)("XXX"){: ((2cos(x)+1)=0," or ",(cos(x)+1)=0), (rarr cos(x)=-1/2,,rarr cos(x)=-1), (rarr x = (2pi)/3,,rarr x=pi), (color(white)("xxxxx")"for " x in [0,pi],,color(white)("xxxxx")"for " x in [0,pi]), (,,"BUT the given expression is not defined for this value of "x) :}