Question #0c317

1 Answer
Nov 13, 2017

1/ (sin(x)cos(x))

Explanation:

Remember the trigonometric identities

  • sin^2(x) + cos^2(x) = 1
  • tan^2(x) + 1 = sec^2(x)
  • cot^2(x) + 1 = csc^2(x)

So

cot(x)sec^2(x)

=cot(x)[tan^2(x) + 1]

=tan(x) + cot(x)

=(sin(x)/cos(x)) + (cos(x)/sin(x))

=(sin^2(x)/(sin(x)cos(x))) + (cos^2(x)/(sin(x)cos(x)))

=(sin^2(x) + cos^2(x))/ (sin(x)cos(x))

=1/(sin(x)cos(x))