Prove? secx/sinx-cscx/secx=tanx

2 Answers

See below:

Explanation:

secx/sinx-cscx/secx=tanx

remember that secx=1/cosx and cscx=1/sinx

1/(sinxcosc)-cosx/sinx=tanx

1/(sinxcosc)-cosx/sinx(cosx/cosx)=tanx

1/(sinxcosc)-cos^2x/(sinxcosx)=tanx

(1-cos^2)/(sinxcosc)=tanx

remember that sin^2x+cos^2x=1 => sin^2x=1-cos^2x

sin^2x/(sinxcosc)=tanx

sinx/cosx=tanx

tanx=tanx color(white)(000)color(green)root

Nov 15, 2017

LHS=sec(x)/sin(x) - csc(x)/sec(x)

=(sec(x)sec(x) - csc(x)sin(x))/(sinxsecx)

=(sec^2(x) - 1)/(sinx/cosx)

=tan^2x/tanx

= tan(x)=RHS