If A = 9/16(4r-sin(4r)) A=916(4rsin(4r)) and (dr)/dt=0.7drdt=0.7 when r=pi/4r=π4 then evaluate (dA)/dt dAdt when r=pi/4r=π4?

1 Answer
Nov 20, 2017

[ (dA)/dt ]_(r=pi/4) = 3.15 [dAdt]r=π4=3.15

Explanation:

We have:

A = (9/16)(4r-sin(4r)) A=(916)(4rsin(4r))

If we denote time in minutes by tt, Then differentiating implicitly wrt tt we have:

\ \ \ (d)/dtA = (9/16)d/dt(4r-sin(4r))

:. (dA)/dt = (9/16)(dr)/dt d/(dr)(4r-sin(4r))

:. (dA)/dt = (9/16)(dr)/dt (4-4cos(4r))

And we are given that (dr)/dt=0.7

\ \ \ \ (dA)/dt = (9/4)(0.7) (1-cos(4r))
:. (dA)/dt = (1.575) (1-cos(4r))

So, when r=pi/4, we have:

[ (dA)/dt ]_(r=pi/4) = (1.575) (1-cos(pi))
" " = (1.575) (1-(-1))
" " = 3.15