Find the derivative using first principles? : x^3

1 Answer
Nov 29, 2017

f'(x) = 3x^2

Explanation:

Using the limit definition of the derivative:

f'(x) = lim_(h->0)(f(x+h)-f(x))/h

With f(x)=x^3 we have:

f'(x) = lim_(h->0 ) ( (x+h)^3 - x^3 )/h

And expanding using the binomial theorem (or Pascal's triangle) we get:

f'(x) = lim_(h->0 ) ( (x^3+3x^2h+3xh^2+h^3) - x^3 )/h
\ \ \ \ \ \ \ \ \ = lim_(h->0 ) ( 3x^2h+3xh^2+h^3 )/h
\ \ \ \ \ \ \ \ \ = lim_(h->0 ) 3x^2+3xh+h^2
\ \ \ \ \ \ \ \ \ = 3x^2