Question #21640

2 Answers
Dec 1, 2017

We can use orthogonal combinations of sines and cosines to prove that \sin\theta=(3/5).

Explanation:

You have the following:

3\sin\theta+4\cos\theta=5

Now construct an orthogonal relation by changing the + sign to - and switching the sine and cosine terms:

4\sin\theta-3\cos\theta=a

We have to find a.

Square both equations:

9\sin^2\theta+24\sin\theta\cos\theta+16\cos^2\theta=25

16\sin^2\theta-24\sin\theta\cos\theta+9\cos^2\theta=a^2

And then add them up. Note that some terms cancel:

25(\sin^2\theta+\cos^2\theta)=25+a^2

But then, \sin^2\theta+\cos^2\theta=1. And now we see a has to equal zero!

So our original linear relations must be

3\sin\theta+4\cos\theta=5

4\sin\theta-3\cos\theta=0

Now just take three times the first equation plus four times the second making the cosines cancel:

25\sin\theta=15

\sin\theta=(3/5)

Dec 1, 2017

sintheta=3/5

Explanation:

We are given 3sintheta+4costheta=5

3sintheta+4costheta can equal R(costhetacosalpha+sinthetasinalpha)-=Rcos(theta-alpha)

R=sqrt(3^2+4^2)=sqrt(25)=5

3sintheta+4costheta=Rcosthetacosalpha+Rsinthetasinalpha

3=Rsinalpha
4=Rcosalpha

(Rsinalpha)/(Rcosalpha)=tanalpha=3/4

alpha=arctan(3/4) (We will leave alpha as that to avoid any rounding errors)

5cos(theta-arctan(3/4))=5

cos(theta-arctan(3/4))=1

theta-arctan(3/4)=arccos(1)=0

theta=arctan(3/4)

sintheta=sin(arctan(3/4))=3/5