Find the derivative using first principles? : x^n

4 Answers
Dec 3, 2017

We can do this via the use of first principles...

Explanation:

We must first derive the idea of a derivative;

enter image source here

using this idea we must use this for f(x) = x^n

to yields;

lim_(h->0) ((x+h)^n - x^n)/(h)

Now we must cosnider the expansion of (x+h)^n

We use (alpha + beta)^n = alpha^n + (nC1) alpha^(n-1)beta + ... + beta^n

So hence (x+h)^n = x^n + (nC1)x^(n-1)h + ...

hence the limit becomes; lim_(h->0) (nC1)x^(n-1) + (nC2)x^(n-2)h + ...

= (nC1)x^(n-1)

and we know nC1 = n

So hence yields;

d/(dx) ( x^n) = nx^(n-1)

Dec 3, 2017

See below.

Explanation:

Using the power rule:

d/dx(x^n)=nx^(n-1)

Example:

d/dx(x^4)=(4)x^(4-1)=4x^3

Dec 4, 2017

Please see below.

Explanation:

Verify (by multiplication) that for positive integer n,

x^n-t^n=(x-t)(x^(n-1)+x^(n-2)t + x^(n-3)t^2 + * * * +xt^(n-2)+t^(n-1))

d/dx(x^n) = lim_(trarrx)(x^n-t^n)/(x-t)

= lim_(trarrx)((x-t)(x^(n-1)+x^(n-2)t + x^(n-3)t^2 + * * * +xt^(n-2)+t^(n-1)))/(x-t)

= lim_(trarrx)(x^(n-1)+x^(n-2)t + x^(n-3)t^2 + * * * +xt^(n-2)+t^(n-1))

There are n terms, each with limit x^(n-1), so the limit is

d/dx(x^n) = nx^(n-1) for positive integer n.

Dec 4, 2017

d/dx x^n= nx^(n-1)

Explanation:

Using the limit definition of the derivative then if:

y = f(x) = x^n

Then we have:

dy/dx = lim_(h rarr 0) (f(x+h) - f(x))/h
\ \ \ \ \ = lim_(h rarr 0) ((x+h)^n - x^n)/h

Then using the Binomial Theorem, we can expand to get:

dy/dx = lim_(h rarr 0) ({x^n+nx^(n-1)h+...+h^n} - x^n)/h
\ \ \ \ \ = lim_(h rarr 0) (nx^(n-1)h+...+h^n)/h
\ \ \ \ \ = lim_(h rarr 0) nx^(n-1)+...+h^(n-1)

Note that all the terms on the right, apart from the first, contain the term h. In the limit as h tends to zero, all these become zero.

:. dy/dx = nx^(n-1)