Question #d325d
2 Answers
To be able to add these together we will use cross multiply to get the fractions to have similar denominators.
Applying this, we get:
We can use the identity that
Explanation:
"consider the left side"
"we require the fractions to have a "color(blue)"common denominator"
"multiply numerator/denominator of"
(1+sinx)/cosx" by "(1+sinx)
rArr(1+sinx)^2/(cosx(1+sinx))
"multiply numerator/denominator of"
cosx/(1+sinx)" by "cosx
rArrcos^2x/(cosx(1+sinx))
"we now have the sum"
(1+sinx)^2/(cosx(1+sinx))+cos^2x/(cosx(1+sinx))
"expand and sum the numerators"
=(1+2sinx+sin^2x+cos^2x)/(cosx(1+sinx))
•color(white)(x)sin^2x+cos^2x=1
=(2cancel((1+sinx)))/(cosxcancel((1+sinx)))
=2/cosx=2secx=" right side "rArr" verified"