Question #d325d

2 Answers
Dec 7, 2017

To be able to add these together we will use cross multiply to get the fractions to have similar denominators.

a/b+c/d=(a*d)/(b*d)+(c*b)/(b*d)=(ad+cb)/(bd)

Applying this, we get:

((1+sinx)/cosx)+(cosx/(1+sinx))

=((1+sinx) * (1+sinx))/(cosx * (1+sinx))+(cosx * cosx)/(cosx * (1+sinx))

=((1+sinx)(1+sinx)+(cosx)(cosx))/(cosx(1+sinx))

=(1+2sinx+sin^2x+cos^2x)/(cosx(1+sinx))

We can use the identity that cos^2x+sin^2x-=1 to get:

=(1+2sinx+1)/(cosx(1+sinx))

=(2+2sinx)/(cosx(1+sinx))

=(2(1+sinx))/(cosx(1+sinx))

=(2cancel((1+sinx)))/(cosxcancel((1+sinx)))

=2/cosx

=2secx

Dec 7, 2017

"see explanation"

Explanation:

"consider the left side"

"we require the fractions to have a "color(blue)"common denominator"

"multiply numerator/denominator of"

(1+sinx)/cosx" by "(1+sinx)

rArr(1+sinx)^2/(cosx(1+sinx))

"multiply numerator/denominator of"

cosx/(1+sinx)" by "cosx

rArrcos^2x/(cosx(1+sinx))

"we now have the sum"

(1+sinx)^2/(cosx(1+sinx))+cos^2x/(cosx(1+sinx))

"expand and sum the numerators"

=(1+2sinx+sin^2x+cos^2x)/(cosx(1+sinx))

•color(white)(x)sin^2x+cos^2x=1

=(2cancel((1+sinx)))/(cosxcancel((1+sinx)))

=2/cosx=2secx=" right side "rArr" verified"