Given that x = cottheta+ tantheta and y = sec theta - costheta, how do you find an expression for x and y in terms of x and y ?

2 Answers
Dec 11, 2017

x=cot(sin^-1(root(3)(y/x))) + tan(sin^-1(root(3)(y/x))); y=sec(sin^-1(root(3)(y/x)))- cos(sin^-1(root(3)(y/x)))

Explanation:

Given:

x=cot(theta) + tan(theta); y=sec(theta)- cos(theta)

Write both equation in terms of sine and cosine functions only:

x=cos(theta)/sin(theta) + sin(theta)/cos(theta); y=1/cos(theta)- cos(theta)

Make common denominators for both equations:

x=cos^2(theta)/(sin(theta)cos(theta)) + sin^2(theta)/(sin(theta)cos(theta)); y=1/cos(theta)- cos^2(theta)/cos(theta)

Combine both equations over their respective common denominators:

x=(cos^2(theta) + sin^2(theta))/(sin(theta)cos(theta)); y=(1- cos^2(theta))/cos(theta)

We know that cos^2(theta) + sin^2(theta) = 1 and 1- cos^2(theta)= sin^2(theta):

x=1/(sin(theta)cos(theta)); y=sin^2(theta)/cos(theta)

Divide y by x:

y/x = (sin^2(theta)/cos(theta))/(1/(sin(theta)cos(theta)))

y/x = sin^3(theta)

sin(theta) = root(3)(y/x)

theta = sin^-1(root(3)(y/x))

Substitute into the original equations:

x=cot(sin^-1(root(3)(y/x))) + tan(sin^-1(root(3)(y/x))); y=sec(sin^-1(root(3)(y/x)))- cos(sin^-1(root(3)(y/x)))

Dec 11, 2017

y = sec(1/2arcsin(2/x)) - cos(1/2arcsin(2/x))
x = cot(1/2arcsin(2/x)) + tan(1/2arcsin(2/x))

Explanation:

A little different answer. Rewriting in cosine and sine:

x = costheta/sintheta + sintheta/costheta

x= (cos^2theta + sin^2theta)/(costhetasintheta)

Recalling that cos^2theta + sin^2theta = 1:

x= 1/(costhetasintheta)

costhetasintheta = 1/x

We know that 2sinxcosx = sin(2x), thus:

1/2sin(2theta) = 1/x

sin(2theta) = 2/x

2theta = arcsin(2/x)

theta= 1/2arcsin(2/x)

Therefore, substituting:

y = sec(1/2arcsin(2/x)) - cos(1/2arcsin(2/x))

Hopefully this helps!