Find the derivative of tan(ax+b) from first principles?

1 Answer
Dec 14, 2017

d/dx tan(ax+b) = asec^2(ax+b)

Explanation:

Using the derivative definition, if:

f(x) = tan(ax+b)

Then, the derivative f'(x) is given by:

f'(x) = lim_(h rarr 0) ( f(x+h)-f(x) )/ h

\ \ \ \ \ \ \ \ \ = lim_(h rarr 0) ( tan(a(x+h)+b)-tan(ax+b) ) /h

\ \ \ \ \ \ \ \ \ = lim_(h rarr 0) ( tan((ax+b)+ah)-tan(ax+b) ) /h

\ \ \ \ \ \ \ \ \ = lim_(h rarr 0) ( (tan (ax+b)+tan ah)/(1-tan (ax+b) tan ah )-tan(ax+b) ) /h

\ \ \ \ \ \ \ \ \ = lim_(h rarr 0) ( (tan (ax+b)+tan ah - tanx(1-tan (ax+b) tan ah )) / ( 1-tan (ax+b) tan ah ) ) /h

\ \ \ \ \ \ \ \ \ = lim_(h rarr 0) ( tan (ax+b)+tan ah - tan(ax+b)+tan^2 (ax+b) tan ah ) / (h( 1-tan (ax+b) tan ah ) )

\ \ \ \ \ \ \ \ \ = lim_(h rarr 0) ( tan ah (1+ tan^2(ax+b)) ) / (h( 1-tan (ax+b) tan ah ) )

\ \ \ \ \ \ \ \ \ = lim_(h rarr 0) ( 1+ tan^2(ax+b)) / ( 1-tan (ax+b) tan ah ) * (tan ah)/h

\ \ \ \ \ \ \ \ \ = lim_(h rarr 0) ( 1+ tan^2(ax+b)) / ( 1-tan (ax+b) tan ah ) * lim_(h rarr 0) (tan ah)/h

Consider the first limit:

L_1 = lim_(h rarr 0) ( 1+ tan^2(ax+b)) / ( 1-tan (ax+b) tan ah )
\ \ \ \ = ( 1+ tan^2(ax+b)) / ( 1-tan (ax+b) 0 )
\ \ \ \ = 1+ tan^2(ax+b)
\ \ \ \ = sec^2(ax+b)

And, now the second limit:

L_2 = lim_(h rarr 0) (tan ah)/h
\ \ \ \ = lim_(h rarr 0) (sin ah)/(cos ah) * 1/h
\ \ \ \ = lim_(h rarr 0) (sin ah)/h * 1/(cos ah)
\ \ \ \ = lim_(h rarr 0) (asin ah)/(ah) * 1/(cos ah)
\ \ \ \ = lim_(h rarr 0) (asin ah)/(ah) * lim_(h rarr 0) 1/(cos ah)
\ \ \ \ = a \ lim_(theta rarr 0) (sin theta)/(theta) * lim_(h rarr 0) 1/(cos ah)

And for this limit we have:

lim_(theta rarr 0) (sin theta)/(theta) =1 and lim_(h rarr 0) 1/(cos ah) = 1

Leading to:

L_2 = a

Combining these results we have:

f'(x) = sec^2(ax+b) * a
\ \ \ \ \ \ \ \ \ = asec^2(ax+b)