Find the derivative of tan(ax+b) from first principles?
1 Answer
d/dx tan(ax+b) = asec^2(ax+b)
Explanation:
Using the derivative definition, if:
f(x) = tan(ax+b)
Then, the derivative
f'(x) = lim_(h rarr 0) ( f(x+h)-f(x) )/ h
\ \ \ \ \ \ \ \ \ = lim_(h rarr 0) ( tan(a(x+h)+b)-tan(ax+b) ) /h
\ \ \ \ \ \ \ \ \ = lim_(h rarr 0) ( tan((ax+b)+ah)-tan(ax+b) ) /h
\ \ \ \ \ \ \ \ \ = lim_(h rarr 0) ( (tan (ax+b)+tan ah)/(1-tan (ax+b) tan ah )-tan(ax+b) ) /h
\ \ \ \ \ \ \ \ \ = lim_(h rarr 0) ( (tan (ax+b)+tan ah - tanx(1-tan (ax+b) tan ah )) / ( 1-tan (ax+b) tan ah ) ) /h
\ \ \ \ \ \ \ \ \ = lim_(h rarr 0) ( tan (ax+b)+tan ah - tan(ax+b)+tan^2 (ax+b) tan ah ) / (h( 1-tan (ax+b) tan ah ) )
\ \ \ \ \ \ \ \ \ = lim_(h rarr 0) ( tan ah (1+ tan^2(ax+b)) ) / (h( 1-tan (ax+b) tan ah ) )
\ \ \ \ \ \ \ \ \ = lim_(h rarr 0) ( 1+ tan^2(ax+b)) / ( 1-tan (ax+b) tan ah ) * (tan ah)/h
\ \ \ \ \ \ \ \ \ = lim_(h rarr 0) ( 1+ tan^2(ax+b)) / ( 1-tan (ax+b) tan ah ) * lim_(h rarr 0) (tan ah)/h
Consider the first limit:
L_1 = lim_(h rarr 0) ( 1+ tan^2(ax+b)) / ( 1-tan (ax+b) tan ah )
\ \ \ \ = ( 1+ tan^2(ax+b)) / ( 1-tan (ax+b) 0 )
\ \ \ \ = 1+ tan^2(ax+b)
\ \ \ \ = sec^2(ax+b)
And, now the second limit:
L_2 = lim_(h rarr 0) (tan ah)/h
\ \ \ \ = lim_(h rarr 0) (sin ah)/(cos ah) * 1/h
\ \ \ \ = lim_(h rarr 0) (sin ah)/h * 1/(cos ah)
\ \ \ \ = lim_(h rarr 0) (asin ah)/(ah) * 1/(cos ah)
\ \ \ \ = lim_(h rarr 0) (asin ah)/(ah) * lim_(h rarr 0) 1/(cos ah)
\ \ \ \ = a \ lim_(theta rarr 0) (sin theta)/(theta) * lim_(h rarr 0) 1/(cos ah)
And for this limit we have:
lim_(theta rarr 0) (sin theta)/(theta) =1 andlim_(h rarr 0) 1/(cos ah) = 1
Leading to:
L_2 = a
Combining these results we have:
f'(x) = sec^2(ax+b) * a
\ \ \ \ \ \ \ \ \ = asec^2(ax+b)