What is the solution of the differential equation dy/dx = 2y(5-3y) dydx=2y(53y) with y(0)=2y(0)=2?

2 Answers
Dec 21, 2017

y = (10e^(10x))/(6e^(10x)-1) y=10e10x6e10x1

Explanation:

We have:

dy/dx = 2y(5-3y) dydx=2y(53y)

This is a First Order Separable ODE, so we can "separate the variables" to get

int \ 1/(y(5-3y)) \ dy = int \ 2 \ dx

The RHS is trivial, and the LHS can be integrated by decomposing the integrand into partial fractions:

1/(y(5-3y)) -= A/y+ B/(5-3y)
" " = (A(5-3y)+By)/(y(5-3y))

Leading to the identity:

1 -= A(5-3y)+By

Where A,B are constants that are to be determined. We can find them by substitutions (In practice we do this via the "cover up" method:

Put y =0 => 1=5A => A=1/5
Put x = 5/3 => 1 = (5B)/3 => B = 3/5

So we can now write:

\ \ \ \ \ \ \ \ \int \ (1/5)/y + (3/5)/(5-3y) \ dy = int \ 2 \ dx

:. 1/5 int \ 1/y - 3/(3y-5) \ dy = int \ 2 \ dx

And integrating we get:

1/5 { ln|y| - ln|3y-5|} = 2x + C

Using the initial condition y(0)=2 then:

1/5 { ln2 - ln1} = C => C= 1/5ln 2

So we have:

1/5 { ln|y| - ln|3y-5|} = 2x + 1/5ln 2

:. ln|y| - ln|3y-5| = 10x + ln 2

:. ln|y/(3y-5)| = 10x + ln 2

:. y/(3y-5) = e^(10x + ln 2)

:. y = (3y-5) 2e^(10x)

:. y = 6ye^(10x) - 10e^(10x)

:. 6ye^(10x) - y = 10e^(10x)

:. (6e^(10x)-1)y = 10e^(10x)

:. y = (10e^(10x))/(6e^(10x)-1)

Dec 21, 2017

y(x) = 10/(6-e^(-10x))

Explanation:

This is a separable differential equation:

dy/dx = 2y(5-3y)

dy/(2y(5-3y)) = dx

(1) " " int dy/(2y(5-3y)) = int dx

Solve the integral in y using partial fractions:

1/(2y(5-3y)) = A/(2y) + B/(5-3y)

1/(2y(5-3y)) = (A(5-3y)+2By)/(2y(5-3y))

y(2B-3A) +5A=1

{(2B-3A=0),(5A=1):}

{(A=1/5),(B=3/10):}

int dy/(2y(5-3y)) = 1/10int dy/y+3/10int dy/(5-3y)

int dy/(2y(5-3y)) = 1/10(int dy/y-int (d(5-3y))/(5-3y))

int dy/(2y(5-3y)) = 1/10(lnabsy-lnabs(5-3y)) + C

int dy/(2y(5-3y)) =-1/10lnabs(5/y-3) + C

Substituting in (1):

x = -1/10lnabs(5/y-3) + C

-10x+C =lnabs(5/y-3)

ce^(-10x) = 5/y-3

5/y =3+ce^(-10x)

y =5/(3+ce^(-10x))

For x=0 the initial condition is y(0)=2, so:

2=5/(3+c)

c=-1/2

The required solution is then:

y(x) = 10/(6-e^(-10x))