Find the derivative using first principles? : ln(3x) ln(3x)

1 Answer
Dec 24, 2017

dy/dx = 1/x dydx=1x

Explanation:

Let f(x)=y=ln(3x) f(x)=y=ln(3x)

Then the limit definition of the derivative tells us that;

f'(x) = lim_(h rarr 0) ( f(x+h)-f(x) ) / h
\ \ \ \ \ \ \ \ \ = lim_(h rarr 0) ( ln(3(x+h))-ln(3x) ) / h
\ \ \ \ \ \ \ \ \ = lim_(h rarr 0) ( ln(3x+3h)-ln(3x) ) / h
\ \ \ \ \ \ \ \ \ = lim_(h rarr 0) ( ln( (3x+3h)/(3x) ) ) / h
\ \ \ \ \ \ \ \ \ = lim_(h rarr 0) ( ln( 1+h/x ) ) / h

Now perform a substitution, Let:

v=h/x so that v rarr 0 as h rarr 0

Then:

f'(x) = lim_(v rarr 0) ( ln( 1+v ) ) / (vx)
\ \ \ \ \ \ \ \ \ = lim_(v rarr 0) 1/x( ln( 1+v ) ) / (v)
\ \ \ \ \ \ \ \ \ = 1/x \ lim_(v rarr 0) (1/v) ln( 1+v )
\ \ \ \ \ \ \ \ \ = 1/x \ lim_(v rarr 0) ln( 1+v ) ^(1/v)
\ \ \ \ \ \ \ \ \ = 1/x \ ln{lim_(v rarr 0) ( 1+v ) ^(1/v)}

This limit is a known result, as determined by Leonhard Euler, and we have:

lim_(v rarr 0) ln( 1+v ) ^(1/v) = e

Leading to the result:

f'(x) = 1/x \ lne
\ \ \ \ \ \ \ \ \ = 1/x