Find int \ 1/(x^2 + x + 1) \ dx ?

2 Answers
Dec 30, 2017

(2/sqrt(3)) arctan((2/sqrt(3))x + 1/(sqrt(3))) + C

Explanation:

"Write "x^2+x+1" as "(x+1/2)^2 + 3/4
"and this as "(3/4) ((4/3) (x+1/2)^2 + 1)
"so we get "(3/4) ((2/sqrt(3)) x + 1/(sqrt(3)))^2 + 1)
"so we have"

(4/3) (sqrt(3)/2) int (d((2/sqrt(3))x + 1/(sqrt(3)))) / (((2/sqrt(3)) x + 1/(sqrt(3)))^2 + 1)

"Now we recognize the integral of "1/(1+x^2)" which is arctan(x)."

=> (2/sqrt(3)) arctan((2/sqrt(3))x + 1/(sqrt(3))) + C

Dec 30, 2017

int \ 1/(x^2 + x + 1) \ dx = 2/sqrt(3) \ arctan( (2x+1)/sqrt(3)) + C

Explanation:

We seek:

I = int \ 1/(x^2 + x + 1) \ dx

First we complete the square on the quadratic denominator:

I = int \ 1/((x + 1/2)^2-(1/2)^2 + 1) \ dx
\ \ = int \ 1/((x + 1/2)^2 + 3/4) \ dx
\ \ = int \ 1/((x + 1/2)^2 + (sqrt(3)/2)^2) \ dx

Now, we can perform a substitution, Let

u = (2x+1)/sqrt(3) => x = sqrt(3)/2u -1/2

And differentiating wrt x we have:

(du)/dx =2/sqrt(3)

If we substitute into the integral, we then get:

I = int \ 1/((sqrt(3)/2u)^2 + (sqrt(3)/2)^2) \ (sqrt(3)/2) \ du

\ \ = sqrt(3)/2 \ int \ 1/((sqrt(3)/2)^2u^2 + (sqrt(3)/2)^2) \ du

\ \ = sqrt(3)/2 \ int \ (2/sqrt(3))^2 1/(u^2 +1 ) \ du

\ \ = 2/sqrt(3) \ int \ 1/(u^2 +1 ) \ du

And this is a standard integral, so we can integrate, to get:

I = 2/sqrt(3) \ arctanu + C

Then we restore the substitution:

I = 2/sqrt(3) \ arctan( (2x+1)/sqrt(3)) + C