Find # int \ 1/(x^2 + x + 1) \ dx #?

2 Answers
Dec 30, 2017

#(2/sqrt(3)) arctan((2/sqrt(3))x + 1/(sqrt(3))) + C#

Explanation:

#"Write "x^2+x+1" as "(x+1/2)^2 + 3/4#
#"and this as "(3/4) ((4/3) (x+1/2)^2 + 1)#
#"so we get "(3/4) ((2/sqrt(3)) x + 1/(sqrt(3)))^2 + 1)#
#"so we have"#

#(4/3) (sqrt(3)/2) int (d((2/sqrt(3))x + 1/(sqrt(3)))) / (((2/sqrt(3)) x + 1/(sqrt(3)))^2 + 1)#

#"Now we recognize the integral of "1/(1+x^2)" which is arctan(x)."#

#=> (2/sqrt(3)) arctan((2/sqrt(3))x + 1/(sqrt(3))) + C#

Dec 30, 2017

# int \ 1/(x^2 + x + 1) \ dx = 2/sqrt(3) \ arctan( (2x+1)/sqrt(3)) + C #

Explanation:

We seek:

# I = int \ 1/(x^2 + x + 1) \ dx #

First we complete the square on the quadratic denominator:

# I = int \ 1/((x + 1/2)^2-(1/2)^2 + 1) \ dx #
# \ \ = int \ 1/((x + 1/2)^2 + 3/4) \ dx #
# \ \ = int \ 1/((x + 1/2)^2 + (sqrt(3)/2)^2) \ dx #

Now, we can perform a substitution, Let

# u = (2x+1)/sqrt(3) => x = sqrt(3)/2u -1/2#

And differentiating wrt #x# we have:

# (du)/dx =2/sqrt(3) #

If we substitute into the integral, we then get:

# I = int \ 1/((sqrt(3)/2u)^2 + (sqrt(3)/2)^2) \ (sqrt(3)/2) \ du #

# \ \ = sqrt(3)/2 \ int \ 1/((sqrt(3)/2)^2u^2 + (sqrt(3)/2)^2) \ du #

# \ \ = sqrt(3)/2 \ int \ (2/sqrt(3))^2 1/(u^2 +1 ) \ du #

# \ \ = 2/sqrt(3) \ int \ 1/(u^2 +1 ) \ du #

And this is a standard integral, so we can integrate, to get:

# I = 2/sqrt(3) \ arctanu + C #

Then we restore the substitution:

# I = 2/sqrt(3) \ arctan( (2x+1)/sqrt(3)) + C #