Differentiate y=(sin(x))log(x)?

1 Answer
Jan 2, 2018

dydx=0.4343(sinx)logx(sinxx+cotxlnx)

Explanation:

As y=(sin(x))log(x)

we have lny=ln(sin(x))log(x)=logxln(sinx)=lnxln10ln(sinx)

Now as lny=lnxln10ln(sinx)

1ydydx=1ln10(1xln(sinx)+lnx1sinxcosx)

= 12.3026(sinxx+cotxlnx)

or dydx=12.3026(sinxx+cotxlnx)×(sinx)logx

= 0.4343(sinx)logx(sinxx+cotxlnx)