Find the derivative using first principles? : y=e^(2x)
1 Answer
dy/dx = 2e^(2x)
Explanation:
Using the limit definition of the derivative:
y=f(x) => dy/dx = lim_(h rarr 0) (f(x+h)-f(x))/h
So if
dy/dx = lim_(h rarr 0) ( e^(2(x+h)) - e^(2(x)))/h
\ \ \ \ \ \ = lim_(h rarr 0) ( e^(2x+2h) - e^(2x))/h
\ \ \ \ \ \ = lim_(h rarr 0) ( e^(2x)e^(2h) - e^(2x))/h
\ \ \ \ \ \ = lim_(h rarr 0) ( e^(2x)(e^(2h) - 1))/h
\ \ \ \ \ \ = e^(2x) \ lim_(h rarr 0) ( e^(2h) - 1)/h
\ \ \ \ \ \ = e^(2x) \ lim_(h rarr 0) ( 2(e^(2h) - 1))/(2h)
\ \ \ \ \ \ = 2e^(2x) \ lim_(h rarr 0) ( e^(2h) - 1)/(2h)
Then if we perform, a substitution,
h rarr 0 => alpha rarr 0
So we can write the derivative as:
dy/dx = 2e^(2x) \ lim_(alpha rarr 0) ( e^(alpha) - 1)/(alpha)
Now
dy/dx = 2e^(2x)