Find the derivative using first principles? : y=e^(2x)

1 Answer
Jan 5, 2018

dy/dx = 2e^(2x)

Explanation:

Using the limit definition of the derivative:

y=f(x) => dy/dx = lim_(h rarr 0) (f(x+h)-f(x))/h

So if y=e^(2x); then:

dy/dx = lim_(h rarr 0) ( e^(2(x+h)) - e^(2(x)))/h
\ \ \ \ \ \ = lim_(h rarr 0) ( e^(2x+2h) - e^(2x))/h
\ \ \ \ \ \ = lim_(h rarr 0) ( e^(2x)e^(2h) - e^(2x))/h
\ \ \ \ \ \ = lim_(h rarr 0) ( e^(2x)(e^(2h) - 1))/h
\ \ \ \ \ \ = e^(2x) \ lim_(h rarr 0) ( e^(2h) - 1)/h
\ \ \ \ \ \ = e^(2x) \ lim_(h rarr 0) ( 2(e^(2h) - 1))/(2h)
\ \ \ \ \ \ = 2e^(2x) \ lim_(h rarr 0) ( e^(2h) - 1)/(2h)

Then if we perform, a substitution, alpha=2h then clearly:

h rarr 0 => alpha rarr 0

So we can write the derivative as:

dy/dx = 2e^(2x) \ lim_(alpha rarr 0) ( e^(alpha) - 1)/(alpha)

Now lim_(alpha rarr 0) ( e^alpha - 1 ) / alpha = 1 is a standard calculus limit whose limit is unity, and so we find that:

dy/dx = 2e^(2x)