What is the general solution of the differential equation (1+x)dy/dx-y=1+x (1+x)dydx−y=1+x?
1 Answer
y = (1+x)ln(1+x) + C(1+x) y=(1+x)ln(1+x)+C(1+x)
Explanation:
We have:
(1+x)dy/dx-y=1+x (1+x)dydx−y=1+x
We can re-arrange this ODE as follows:
dy/dx - 1/(1+x) y=1 dydx−11+xy=1 ..... [1]
This is a First Order Linear non-homogeneous Ordinary Differential Equation of the form;
dy/dx + P(x)y=Q(x) dydx+P(x)y=Q(x)
We can readily generate an integrating factor when we have an equation of this form, given by;
I = e^(int P(x) dx) I=e∫P(x)dx
\ \ = exp(int \ -1/(1+x) \ dx)
\ \ = exp( -ln(1+x) )
\ \ = -(1+x)
And if we multiply the DE [1] by this Integrating Factor,
-1/(1+x) dy/dx + 1/(1+x)^2 y = -1/(1+x)
:. d/dx[ -1/(1+x) y] = -1/(1+x)
Which we can directly integrate to get:
1/(1+x) y = int \ 1/(1+x) \ dx
:. 1/(1+x) y = ln(1+x) + C
:. y = (1+x)ln(1+x) + C(1+x)