What is the general solution of the differential equation (1+x)dy/dx-y=1+x (1+x)dydxy=1+x?

1 Answer
Jan 6, 2018

y = (1+x)ln(1+x) + C(1+x) y=(1+x)ln(1+x)+C(1+x)

Explanation:

We have:

(1+x)dy/dx-y=1+x (1+x)dydxy=1+x

We can re-arrange this ODE as follows:

dy/dx - 1/(1+x) y=1 dydx11+xy=1 ..... [1]

This is a First Order Linear non-homogeneous Ordinary Differential Equation of the form;

dy/dx + P(x)y=Q(x) dydx+P(x)y=Q(x)

We can readily generate an integrating factor when we have an equation of this form, given by;

I = e^(int P(x) dx) I=eP(x)dx
\ \ = exp(int \ -1/(1+x) \ dx)
\ \ = exp( -ln(1+x) )
\ \ = -(1+x)

And if we multiply the DE [1] by this Integrating Factor, I, we will have a perfect product differential;

-1/(1+x) dy/dx + 1/(1+x)^2 y = -1/(1+x)
:. d/dx[ -1/(1+x) y] = -1/(1+x)

Which we can directly integrate to get:

1/(1+x) y = int \ 1/(1+x) \ dx
:. 1/(1+x) y = ln(1+x) + C

:. y = (1+x)ln(1+x) + C(1+x)