Prove that (cosx+secx)^2 -= sec^2x+2+ cos^2x?

1 Answer
Jan 9, 2018

Firstly, let us consider the RHS which we can expand and simplify:

RHS = (cosx+secx)^2
\ \ \ \ \ \ \ \ = (cosx+secx)(cosx+secx)
\ \ \ \ \ \ \ \ = cosxcosx+cosxsecx+secxcosx+secxsecx
\ \ \ \ \ \ \ \ = cos^2x+2cosxsecx+sec^2x
\ \ \ \ \ \ \ \ = cos^2x+2cosx*1/cosx+sec^2x
\ \ \ \ \ \ \ \ = cos^2x+2+sec^2x

Now, let us examine the LHS:

LHS = sec^2x+2sin^2x+3cos^2x
\ \ \ \ \ \ \ \ = sec^2x+2sin^2x+2cos^2x + cos^2x
\ \ \ \ \ \ \ \ = sec^2x+2(sin^2x+cos^2x) + cos^2x
\ \ \ \ \ \ \ \ = sec^2x+2+ cos^2x

Hence LHS -= RHS verifying the identity QED