What is the general solution of the differential equation y'-2xy=x^3 ?
1 Answer
y = 5/2e^( x^2 )-1/2x^2-1/2
Explanation:
We have:
y'-2xy=x^3 ..... [1]
This is a First Order Linear non-homogeneous Ordinary Differential Equation of the form;
dy/dx + P(x)y=Q(x)
We can readily generate an integrating factor when we have an equation of this form, given by;
I = e^(int P(x) dx)
\ \ = exp(int \ -2x \ dx)
\ \ = exp( -x^2 )
\ \ = e^( -x^2 )
And if we multiply the DE [1] by this Integrating Factor,
e^( -x^2 )y'-2xe^( -x^2 )y=x^3e^( -x^2 )
:. d/dx(e^( -x^2 )y) = x^3e^( -x^2 )
We can now integrate to get:
e^( -x^2 )y = int \ x^3e^( -x^2 ) \ dx + C
The RHS integral can be evaluated by an application of Integration By Parts (omitted) which gives us:
int \ x^3e^( -x^2 ) \ dx = -1/2(x^2+1)e^(-x^2)
So we have:
e^( -x^2 )y = -1/2(x^2+1)e^(-x^2) + C
Using the initial condition
2e^0 = -1/2(0+1)e^0 + C => C = 5/2
Leading to the Particular Solution:
e^( -x^2 )y = -1/2(x^2+1)e^(-x^2) +5/2
:. y = -1/2(x^2+1)e^(-x^2) +5/(2e^( -x^2 ))
\ \ \ \ = -1/2(x^2+1) +5/2e^( x^2 )
\ \ \ \ = 5/2e^( x^2 )-1/2x^2-1/2