Question #642d1

2 Answers
Jan 17, 2018

int cos^2xsin^2x dx = (4x-sin4x)/32 +C

Explanation:

Using the trigonometric identity:

sin2x = 2sinxcosx

we have that:

cos^2xsin^2x = (sin^2 2x)/4

so:

int cos^2xsin^2x dx = 1/4 int sin^2 (2x)dx

Use now:

sin^2 2x = (1-cos 4x)/2

to have:

int cos^2xsin^2x dx = 1/8 int (1-cos 4x)dx

int cos^2xsin^2x dx = 1/8 int dx - 1/32 int cos 4x d(4x)

int cos^2xsin^2x dx = (4x-sin4x)/32 +C

Jan 17, 2018

intcos^2xsin^2xdx=1/8x-1/32sin(4x)+"C"

Explanation:

Given: intcos^2xsinx^2xdx

The trick is to use a number of identities:

Use the half angle identities to rewrite the integral:

color(blue)(sin^2x=1/2(1-cos(2x))

color(blue)(cos^2x=1/2(1+cos(2x))

=int(1/2(1+cos(2x)))(1/2(1-cos(2x)))dx

Take out the constants: (1/2*1/2=1/4)

=1/4int(1+cos(2x))(1-cos(2x))dx

=1/4int1-cos^2(2x)dx

Use the identity color(blue)(sin^2x+cos^2x=1=>1-cos^2x=sin^2x

=1/4intsin^2(2x)dx

Use the identity: color(blue)(sin^2x=(1-cos(2x))/2

=1/4int(1-cos(4x))/2dx

=1/4*1/2int1-cos(4x)dx

=1/8int1-cos(4x)dx

Integrate each term:

=1/8int1dx-intcos(4x)dx

=1/8[x-1/4sin(4x)]+"C"

=1/8x-1/32sin(4x)+"C"