Question #a5322

2 Answers
Jan 18, 2018

#8(ln(sqrt(1+e^(2x) ) - 1) - x) + C#

Explanation:

Let #u=sqrt(1+e^(2x))# i.e.

#du = (e^(2x))/(u)dx#
#dx = 1/e^(2x)udu = (udu)/(u^2 - 1)#

Therefore, the integral becomes

#int 8/sqrt(1 + e^(2x))dx = int 8/u (udu)/(u^2-1) = int (8du)/(u^2 - 1)#

We can use partial fraction decomposition to separate this out, yielding
B = 4, A = -4
#int (8du)/(u^2 - 1) = int (4/(u-1) - 4/(u+1))du = 4ln((u-1)/(u+1)) + C#

Miraculously, this is the same as your above statement!

#4ln((u-1)/(u+1)) = 8[1/2ln(u-1) - 1/2 ln(u+1)]#
# = 8[ln(u-1) - 1/2ln(u^2-1)] = 8[ln(u-1) - x]#
# = 8[ln(sqrt(1+e^(2x)) - 1) - x] #

where the constant of integration has been left out for convenience.

Jan 18, 2018

The answer is #=8ln(sqrt(e^(2x)+1)-1)-8x+C#

Explanation:

Perform the substitution

#u=1+e^(2x)#, #=>#, #du=2e^(2x)dx#

#e^(2x)=u-1#

Therefore,

#int(8dx)/(sqrt(1+e^(2x)))=8int(du)/(2(u-1)sqrtu)#

#=4int(du)/(sqrtu(u-1))#

Perform the substitution #v=sqrtu#, #=>#, #dv=(du)/(2sqrtu)#

#int(8dx)/(sqrt(1+e^(2x)))=8int(dv)/(v^2-1)#

Perform the decomposition into partial fractions

#1/(v^2-1)=A/(v+1)+B/(v-1)=(A(v-1)+B(v+1))/(v^2-1)#

#1=A(v-1)+B(v+1)#

Let #v=-1#, #1=-2A#, #=>#, #A=-1/2#

Let #v=1#, #1=2B#, #=>#, #B=1/2#

So,

#int(8dx)/(sqrt(1+e^(2x)))=8int-1/2(dv)/(v+1)+8int1/2(dv)/(v-1)#

#=-4ln(v+1)+4ln(v-1)#

#=-4ln(sqrtu+1)+4ln(sqrtu-1)#

#=-4ln(sqrt(1+e^(2x))+1) + 4ln (sqrt(1+e^(2x))-1))#

#=4ln(((sqrt(e^(2x)+1))-1)/((sqrt(e^(2x)+1))+1))#

#=4ln((((sqrt((e^(2x)+1))-1)(sqrt(e^(2x)+1))-1))/(((sqrt((e^(2x)+1)))+1)(sqrt(e^(2x)+1))-1))#

#=4ln(((sqrt(e^(2x)+1)-1))^2/(e^(2x)))#

#=8ln(sqrt(e^(2x)+1)-1)-4ln(e^(2x))#

#=8ln(sqrt(e^(2x)+1)-1)-8x+C#