Show that? (1-tan^2x)/(1+tan^2x) = cos^2-sin^2x

1 Answer
Jan 26, 2018

Consider the LHS of the given expression:

LHS = (1-tan^2x)/(1+tan^2x)

\ \ \ \ \ \ \ \ = (1-sin^2x/cos^2x)/(1+sin^2x/cos^2x)

\ \ \ \ \ \ \ \ = ((cos^2-sin^2x)/cos^2x)/((cos^2x+sin^2x)/cos^2x)

\ \ \ \ \ \ \ \ = ((cos^2-sin^2x)/cos^2x) * (cos^2x/(cos^2x+sin^2x))

\ \ \ \ \ \ \ \ = (cos^2-sin^2x)/(cos^2x+sin^2x)

\ \ \ \ \ \ \ \ = (cos^2-sin^2x)/1 \ \ \ , as cos^2A+sin^2xA -= 1

\ \ \ \ \ \ \ \ = cos^2-sin^2x \ \ \ QED