Let us rewrite the given Diff. Eqn. as,
(1+x^2)dx+x^2sinydy=xdy-ydx(1+x2)dx+x2sinydy=xdy−ydx.
Dividing by x^2x2, we have,
((1+x^2)/x^2)dx+sinydy=(xdy-ydx)/x^2(1+x2x2)dx+sinydy=xdy−ydxx2.
The Right Member of the eqn. is note-worthy :
Observe that, d(y/x)=(xdy-ydx)/x^2d(yx)=xdy−ydxx2.
Utilising this, we find that the given eqn. is,
((1+x^2)/x^2)dx+sinydy=d(y/x)(1+x2x2)dx+sinydy=d(yx), which looks like,
separable variable type. So, Integrating term-wise,
int((1+x^2)/x^2)dx+intsinydy+C=intd(y/x)∫(1+x2x2)dx+∫sinydy+C=∫d(yx).
:. int(1/x^2+1)dx-cosy+C=y/x, i.e.,
-1/x+x-cosy+C=y/x, or,
y=x(x-cosy+C)-1, is the desired General Solution!