Question #3e972

2 Answers
Feb 8, 2018

dy/dx=(y+1+x^2)/(x-x^2(siny))dydx=y+1+x2xx2(siny)

Explanation:

ydx - xdy + (1+x^2)dx + x^2(siny)dy =0ydxxdy+(1+x2)dx+x2(siny)dy=0

ydx + (1+x^2)dx =xdy- x^2(siny)dyydx+(1+x2)dx=xdyx2(siny)dy

dx[y+1+x^2]=dy[x-x^2(siny)]dx[y+1+x2]=dy[xx2(siny)]

dy/dx=(y+1+x^2)/(x-x^2(siny))dydx=y+1+x2xx2(siny)

Feb 8, 2018

y=x(x-cosy+C)-1y=x(xcosy+C)1.

Explanation:

Let us rewrite the given Diff. Eqn. as,

(1+x^2)dx+x^2sinydy=xdy-ydx(1+x2)dx+x2sinydy=xdyydx.

Dividing by x^2x2, we have,

((1+x^2)/x^2)dx+sinydy=(xdy-ydx)/x^2(1+x2x2)dx+sinydy=xdyydxx2.

The Right Member of the eqn. is note-worthy :

Observe that, d(y/x)=(xdy-ydx)/x^2d(yx)=xdyydxx2.

Utilising this, we find that the given eqn. is,

((1+x^2)/x^2)dx+sinydy=d(y/x)(1+x2x2)dx+sinydy=d(yx), which looks like,

separable variable type. So, Integrating term-wise,

int((1+x^2)/x^2)dx+intsinydy+C=intd(y/x)(1+x2x2)dx+sinydy+C=d(yx).

:. int(1/x^2+1)dx-cosy+C=y/x, i.e.,

-1/x+x-cosy+C=y/x, or,

y=x(x-cosy+C)-1, is the desired General Solution!