Prove that? (cos^4 x - sin^4 x)/(1-tan x) -= cos^2 x +sin x cos x
2 Answers
Please see proof below.
Explanation:
We seek to prove that the following is an indetiuty:
(cos^4 x - sin^4 x)/(1-tan x) -= cos^2 x +sin x cos x
Consider the LHS::
LHS -= (cos^4 x - sin^4 x)/(1-tan x)
\ \ \ \ \ \ \ \ = ((cos^2 x)^2 - (sin^2 x)^2)/(1-tan x)
This is the difference of two squares, so we can use the identity:
A^2 - B^2 -= (A+B)(A-B)
Thus:
LHS = ((cos^2 x+sin^2 x)(cos^2 x-sin^2 x))/(1-tan x)
Now, And again, we have the difference of two squares, so we can factor further, and also we use the trigonometric identity:
sin^2x+cos^2x -= 1
Thus:
LHS = ((1)(cosx+sinx)(cos x-sin x))/(1-tan x)
\ \ \ \ \ \ \ \ = ((cosx+sinx)(cos x-sin x))/(1-sinx/cosx)
\ \ \ \ \ \ \ \ = ((cosx+sinx)(cos x-sin x))/((cosx-sinx)/cosx)
\ \ \ \ \ \ \ \ = ((cosx+sinx)(cos x-sin x)cosx)/((cosx-sinx))
\ \ \ \ \ \ \ \ = (cosx+sinx)cosx
\ \ \ \ \ \ \ \ = cos^2x+sinxcosx
\ \ \ \ \ \ \ \ = RHS \ \ \ \ QED