Prove that? # (cos^4 x - sin^4 x)/(1-tan x) -= cos^2 x +sin x cos x #

2 Answers
Feb 13, 2018

Please see proof below.

Explanation:

#(cos^4 x - sin^4 x)/(1-tan x) = cos^2 x +sin x cos x #

#LHS=(cos^4 x - sin^4 x)/(1-tan x) #

#color(white)(LHS)=((cos^2x-sin^2x)(cos^2x+sin^2x))/(1-tanx)#

#color(white)(LHS)=((cos^2x-sin^2x)*1)/(1-tanx)#

#color(white)(LHS)=(cos^2x-sin^2x)/(1-tanx)#

#color(white)(LHS)=((1-sin^2x)-sin^2x)/(1-tanx)#

#color(white)(LHS)=(1-2sin^2x)/(1-tanx)#

#color(white)(LHS)=((1-2sin^2x)(1+tanx))/((1-tanx)(1+tanx))#

#color(white)(LHS)=((1-2sin^2x)(1+tanx))/(1-tan^2x)#

#color(white)(LHS)=((1-2sin^2x)(1+tanx))/(cos^2x/cos^2x-sin^2x/cos^2x)#

#color(white)(LHS)=((1-2sin^2x)(1+tanx))/((cos^2x-sin^2x)/cos^2x)#

#color(white)(LHS)=((1-2sin^2x)(1+tanx))/(((1-sin^2x)-sin^2x)/cos^2x)#

#color(white)(LHS)=((1-2sin^2x)(1+tanx))/((1-2sin^2x)/cos^2x)#

#color(white)(LHS)=(1-2sin^2x)(1+tanx)*(cos^2x/(1-2sin^2x))#

#color(white)(LHS)=color(red)(cancel(color(black)((1-2sin^2x))))(1+tanx)*cos^2x/color(red)(cancel(color(black)((1-2sin^2x))#

#color(white)(LHS)=(1+tanx)*cos^2x#

#color(white)(LHS)=cos^2x+cos^2x*tanx#

#color(white)(LHS)=cos^2x+cos^2x*sinx/cosx#

#color(white)(LHS)=cos^2x+cos^color(red)(cancel(color(black)(2)))x*sinx/color(red)(cancel(color(black)(cosx)))#

#color(white)(LHS)=cos^2x+cosxsinx#

#color(white)(LHS)=cos^2x+sinxcosx#

#color(white)(LHS)=RHS#

Feb 13, 2018

We seek to prove that the following is an indetiuty:

# (cos^4 x - sin^4 x)/(1-tan x) -= cos^2 x +sin x cos x #

Consider the LHS::

# LHS -= (cos^4 x - sin^4 x)/(1-tan x) #
# \ \ \ \ \ \ \ \ = ((cos^2 x)^2 - (sin^2 x)^2)/(1-tan x) #

This is the difference of two squares, so we can use the identity:

# A^2 - B^2 -= (A+B)(A-B) #

Thus:

# LHS = ((cos^2 x+sin^2 x)(cos^2 x-sin^2 x))/(1-tan x) #

Now, And again, we have the difference of two squares, so we can factor further, and also we use the trigonometric identity:

# sin^2x+cos^2x -= 1 #

Thus:

# LHS = ((1)(cosx+sinx)(cos x-sin x))/(1-tan x) #

# \ \ \ \ \ \ \ \ = ((cosx+sinx)(cos x-sin x))/(1-sinx/cosx) #

# \ \ \ \ \ \ \ \ = ((cosx+sinx)(cos x-sin x))/((cosx-sinx)/cosx) #

# \ \ \ \ \ \ \ \ = ((cosx+sinx)(cos x-sin x)cosx)/((cosx-sinx)) #

# \ \ \ \ \ \ \ \ = (cosx+sinx)cosx #

# \ \ \ \ \ \ \ \ = cos^2x+sinxcosx #

# \ \ \ \ \ \ \ \ = RHS \ \ \ \ # QED