Prove that # (sin4t)/4 -= cos^3tsint-sin^3tcost #?
1 Answer
Feb 14, 2018
We seek to show that:
# (sin4t)/4 -= cos^3tsint-sin^3tcost #
Consider the LHS:
# LHS = (sin4t)/4 #
Using the sine and cosine double angle formulas:
# sin2A -= 2sinAcosA #
# cos2A -= cos^2A-sin^2A #
we have:
# LHS = (sin(2(2t)))/4 #
# \ \ \ \ \ \ \ \ = (2sin2tcos2t)/4 #
# \ \ \ \ \ \ \ \ = (2(2sintcost)(cos^2t-sin^2t))/4 #
# \ \ \ \ \ \ \ \ = sintcost(cos^2t-sin^2t) #
# \ \ \ \ \ \ \ \ = sintcostcos^2t-sintcostsin^2t #
# \ \ \ \ \ \ \ \ = sintcos^3t-costsin^3t #
# \ \ \ \ \ \ \ \ = RHS \ \ \ \ # QED