Prove that sqrt((1-cosx)/(1+cosx)) -= (1-cosx)/(|sinx|) √1−cosx1+cosx≡1−cosx|sinx| ?
2 Answers
Feb 14, 2018
Please see below.
Explanation:
.
Feb 14, 2018
We seek to prove that:
sqrt((1-cosx)/(1+cosx)) -= (1-cosx)/(|sinx|) √1−cosx1+cosx≡1−cosx|sinx|
Consider the RHS:
RHS = (1-cosx)/(|sinx|) RHS=1−cosx|sinx|
\ \ \ \ \ \ \ \ = sqrt( ((1-cosx)/(|sinx|))^2 )
\ \ \ \ \ \ \ \ = sqrt( (1-cosx)^2/(sin^2x) )
\ \ \ \ \ \ \ \ = sqrt( (1-cosx)^2/(1-cos^2x) )
\ \ \ \ \ \ \ \ = sqrt( (1-cosx)^2/((1+cosx)(1-cosx) )
\ \ \ \ \ \ \ \ = sqrt( (1-cosx)/(1+cosx) )
\ \ \ \ \ \ \ \ = LHS \ \ \ \ QED