Question #c2ea6

1 Answer
Feb 14, 2018

Future reference:-(see explanation first)

From, (2)(2) and (3)(3),

sinx=(1-sin^2x)/(1+sin^2x)sinx=1sin2x1+sin2x
=>sin^2x=(1-sin^2x)^2/(1+sin^2x)^2sin2x=(1sin2x)2(1+sin2x)2
=>1-cos^2x=(1-sin^2x)^2/(1+sin^2x)^21cos2x=(1sin2x)2(1+sin2x)2
=>cos^2x=((1+sin^2x)^2-(1-sin^2x)^2)/(1+sin^2x)^2cos2x=(1+sin2x)2(1sin2x)2(1+sin2x)2
=>cosx=(2sinx)/(1+sin^2x)cosx=2sinx1+sin2x

Explanation:

sinx+sin^2x+sin^3x=1sinx+sin2x+sin3x=1

=>sinx+sin^3x=1-sin^2x" "...(2)

=>sinx(1+sin^2x)=cos^2x" "...(3)

=>sin^2x(1+sin^2x)^2=(cos^2x)^2

=>(1-cos^2x)(2-cos^2x)^2=cos^4x

=>(1-cos^2x)(4-4cos^2x+cos^4x)=cos^4x

=>4-4cos^2x+cos^4x-4cos^2x+4cos^4x-cos^6x=cos^4x

=>4-4cos^2x+cancel(cos^4x)-4cos^2x+4cos^4x-cos^6x=cancel(cos^4x

=>4-4cos^2x-4cos^2x+4cos^4x-cos^6x=0

=>4(1-2cos^2x+cos^4x)=cos^6x

=>4(1-cos^2x)^2=cos^6x

=>2(1-cos^2x)=cos^3x

=>cos^3x+cos^2x=2-cos^2x

=>cos^3x+cos^2x+cosx=2-cos^2x+cosx

=>cos^3x+cos^2x+cosx=1+sin^2x+(2sinx)/(1+sin^2x)

=>cos^3x+cos^2x+cosx=((1+sin^2x)^2+2sinx)/(1+sin^2x)

=>cos^3x+cos^2x+cosx=