Question #c2ea6
1 Answer
Future reference:-(see explanation first)
From,
sinx=(1-sin^2x)/(1+sin^2x)sinx=1−sin2x1+sin2x
=>sin^2x=(1-sin^2x)^2/(1+sin^2x)^2⇒sin2x=(1−sin2x)2(1+sin2x)2
=>1-cos^2x=(1-sin^2x)^2/(1+sin^2x)^2⇒1−cos2x=(1−sin2x)2(1+sin2x)2
=>cos^2x=((1+sin^2x)^2-(1-sin^2x)^2)/(1+sin^2x)^2⇒cos2x=(1+sin2x)2−(1−sin2x)2(1+sin2x)2
=>cosx=(2sinx)/(1+sin^2x)⇒cosx=2sinx1+sin2x
Explanation:
sinx+sin^2x+sin^3x=1sinx+sin2x+sin3x=1
=>sinx+sin^3x=1-sin^2x" "...(2)
=>sinx(1+sin^2x)=cos^2x" "...(3)
=>sin^2x(1+sin^2x)^2=(cos^2x)^2
=>(1-cos^2x)(2-cos^2x)^2=cos^4x
=>(1-cos^2x)(4-4cos^2x+cos^4x)=cos^4x
=>4-4cos^2x+cos^4x-4cos^2x+4cos^4x-cos^6x=cos^4x
=>4-4cos^2x+cancel(cos^4x)-4cos^2x+4cos^4x-cos^6x=cancel(cos^4x
=>4-4cos^2x-4cos^2x+4cos^4x-cos^6x=0
=>4(1-2cos^2x+cos^4x)=cos^6x
=>4(1-cos^2x)^2=cos^6x
=>2(1-cos^2x)=cos^3x
=>cos^3x+cos^2x=2-cos^2x
=>cos^3x+cos^2x+cosx=2-cos^2x+cosx
=>cos^3x+cos^2x+cosx=1+sin^2x+(2sinx)/(1+sin^2x)
=>cos^3x+cos^2x+cosx=((1+sin^2x)^2+2sinx)/(1+sin^2x)
=>cos^3x+cos^2x+cosx=