Question #9e6e3

1 Answer
Feb 20, 2018

#I=1/5tan^5(x)+2/3tan(x)^3+tan(x)+C#

Explanation:

We want to solve

#I=int1/cos^6(x)dx=intsec^2(x)(sec^2(x))^2dx#

Use the identity #sec^2(x)=1+tan^2(x)#

#I=intsec^2(x)(tan^2(x)+1)^2dx#

Make a substitution #u=tan(x)=>(du)/dx=sec^2(x)#

#I=int(u^2+1)^2du#

#=intu^4+2u^2+1du#

#=1/5u^5+2/3u^3+u+C#

Substitute back #u=tan(x)#

#I=1/5tan^5(x)+2/3tan(x)^3+tan(x)+C#