Question #9e6e3

1 Answer
Feb 20, 2018

I=1/5tan^5(x)+2/3tan(x)^3+tan(x)+C

Explanation:

We want to solve

I=int1/cos^6(x)dx=intsec^2(x)(sec^2(x))^2dx

Use the identity sec^2(x)=1+tan^2(x)

I=intsec^2(x)(tan^2(x)+1)^2dx

Make a substitution u=tan(x)=>(du)/dx=sec^2(x)

I=int(u^2+1)^2du

=intu^4+2u^2+1du

=1/5u^5+2/3u^3+u+C

Substitute back u=tan(x)

I=1/5tan^5(x)+2/3tan(x)^3+tan(x)+C