#972^x = 8#, #243^y = 16#, then #3/x-4/y=#?

2 Answers
Apr 10, 2018

2

Explanation:

#972^x=8, 243^y=16#

try to eliminate 'x'

#972=8^(1/x), 243=16^(1/y)#

make exponent same => 2

#972 = 2^(3/x), 243=2^(4/y)#,

then, you can figure

#972/243 = 2^(3/x-4/y)#,

#972=2^2xx3^5, 243=3^5#

#2^(3/x-4/y)=4, #

#:.3/x-4/y = 2#

Apr 10, 2018

# 2#.

Explanation:

Recall that, #a^x=y iff log_ay=x#.

Accordingly, #972^x=8 rArr x=log_972 8#.

By the Change of Base Rule (CBR), then, #x=log_b 8/log_b 972#,

where #b# is a new base, with #b gt 0, b!=1#.

Similarly, #y=log_b 16/log_b 243#.

#:. 3/x-4/y=3*log_b 972/log_b 8-4*log_b 243/log_b 16#,

#=3*log_b 972/log_b 2^3-4*log_b 243/log_b 2^4#,

#=3*log_b 972/(3log_b 2)-4*log_b 243/(4log_b 2)#,

#=log_b 972/log_b 2-log_b 243/log_b 2#,

#=(log_b 972-log_b 243)/log_b 2#,

#=log_b (972/243)/log_b 2#,

#=log_b 4/log_b 2#,

#=log_2 4.................[because," the CBR]"#,

# rArr 3/x-4/y=2#.