A variable line passing through the origin intersects two given straight lines 2x + y = 4 and x + 3y = 6 at R and S respectively. A point P is taken on this variable line. Find the equation to the locus of the point P if?

A) OP is the arithmetic mean of OR and OS.
B) OP is the geometric mean of OR and OS.
C) OP is the harmonic mean of OR and OS.

1 Answer
Dec 14, 2017

A) : # 2x^2+7xy+3y^2-8x-9y=0.#

Explanation:

Let us name the given lines #l_1:2x+y=4, and l_2:x+3y=6.#

Let the variable line through the Origin be #l.#

Suppose that #l# makes an #/_ theta# with the #+ve# #X-# Axis.

Clearly, #l: y=xtantheta, or, ycostheta=xsintheta.#

Now, for any #P(X,Y) in l,# if the distance #OP=r,# then clearly,

#P(X,Y)=P(rcostheta,rsintheta).#

#:. X^2+Y^2=r^2, or, r=sqrt(x^2+y^2)........................(ast).#

Given that, #l nn l_1={R} rArr R in l, and R in l_1.#

#:."If "OR=r_1,"then, since "R in l, R(r_1costheta,r_1sintheta),#

and, since #R in l_1, 2(r_1costheta)+(r_1sintheta)=4.#

#:. r_1=4/(2costheta+sintheta).#

But, #(X,Y)=(rcostheta,rsintheta),#

#rArr r_1=4/{2(X/r)+Y/r}=(4r)/(2X+Y)............................(ast^1).#

#"Similarly, for "l nn l_2={S}, OS=r_2rArrr_2=6/(costheta+3sintheta).#

#rArr r_2=(6r)/(X+3Y).......................................................(ast^2).#

Recall that to find the Locus of #P(X,Y)# under the given conds.

A),B),C), we have to establish algebraic relation btwn. #X & Y,#

using A),B),C).

Part A) : #OP# is AM of #OR and OS.#

Under this cond., #2r=r_1+r_2.#

Then, by #(ast), (ast^1) and (ast^2),# we have,

#2r=(4r)/(2X+Y)+(6r)/(X+3Y), i.e.,#

# (2X+Y)(X+3Y)=2(X+3Y)+3(2X+Y), or,#

# 2X^2+7XY+3Y^2-8X-9Y=0.#

Returning to traditional #(x,y),# the desired locus is given by,

# 2x^2+7xy+3y^2-8x-9y=0.#

Parts B) and C) can be dealt with similarly.

Enjoy Maths.!